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Traveling Salesperson Problem
Given a set of cities V and their pairwise distances cij , what is the
shortest tour visiting all cities and returning to the start?

from Dantzig, Fulkerson, Johnson, Journal of the Operations Research Society of

America, 1954, 42 cities

2/16 Schawe, Jha, Hartmann



Traveling Salesperson Problem
Given a set of cities V and their pairwise distances cij , what is the
shortest tour visiting all cities and returning to the start?

from Applegate, Bixby, Chvátal, Cook, 2001, 15112 cities

2/16 Schawe, Jha, Hartmann



Traveling Salesperson Problem
Given a set of cities V and their pairwise distances cij , what is the
shortest tour visiting all cities and returning to the start?

from Bosh, Herman, 2004, 100000 cities (not optimal, tour from 2009)
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Linear Programming

maximize cTx

subject to Ax ≤ b.
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Linear Programming

maximize cTx

subject to Ax ≤ b.

I polynomial time
I can be used for combinatorial (integer) problems

I works outside the space of feasible solutions
I is not always a valid solution
I result valid ⇒ result optimal
I yields at least a lower bound
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TSP as LP

let xij be the edge between cities i and j
xij = 1 if i and j are consecutive in the tour else 0
cij = dist(i, j) is the distance between city i and j

minimize
∑
i

∑
j<i

cijxij

for example

xij =


· 1 0 0 1
1 · 0 1 0
0 0 · 1 1
0 1 1 · 0
1 0 1 0 ·


is the cyclic tour (1, 2, 4, 3, 5)
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Constraints
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Constraints

∑
j

xij = 2 ∀i ∈ V

I every city needs 2 ways
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Constraints

∑
j

xij = 2 ∀i ∈ V

I every city needs 2 ways

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V

I kills subtours/loops

I kills some fractional
solutions

I global min-cut to find
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Constraints

minimize
∑
i

∑
j<i

cijxij

subject to xij ∈ {0, 1}∑
j

xij = 2 i = 1, 2, ..., N (IO)

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V, S 6= ∅, S 6= V (SEC)

H xij are restricted to integer
I relax/ignore this and cope with it later

H ∀S ⊂ V are exponentially many
I add only violated

Dantzig, Fulkerson, Johnson, J. Oper. Res. Soc. Am., 2 (1954) 393
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Generating a solution from a LP relaxation

I more sophisticated cutting planes
I Blossom inequalities
I Comb inequalities
I ...

I Branch-and-Bound or Branch-and-Cut
I Combine with heuristics to lower the bound

e.g. implemented in Concorde (Applegate, Bixby, Chvátal, Cook)
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Fuzzy Circle Ensemble (FCE)
Ensemble of disordered circles driven by the parameter σ

1. N cities on a circle
with R = N/2π

2. displace cities
randomly

r

φ

r ∈ U [0, σ], φ ∈ U [0, 2π)

3. optimize the tour

Is there a phase transition easy circle → hard realization?
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 0
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 10
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 20
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 40
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 80
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 160
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Solution probability p

Probability p that the SEC-relaxation is integer
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Schawe, Hartmann, EPL 113 (2016) 30004
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Structural Properties

Observable is surely method dependent
search for “physical” properties of the optimal tours

I solve them by branch-and-cut

I do structural properties change at the transition points?
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Tortuosity

τ =
n− 1

L

n∑
i=1

(
Li
Si
− 1

)

τ = 0 τ = 0

τ ≈ 1.3 τ ≈ 2.4
τ ≈ 4.1
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Tortuosity
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Exploring the Energy Landscape (Work in Progress)

Complex Energy Landscape
change a fraction of an infinite system with finite energy

more precise
if relative difference of T ∗ and T o in energy goes as O( 1

N ) and
their difference goes as O(N) ⇒ sign of broken replica symmetry

Spinglass TSP

Energy Tour Length
Ground State Optimal Tour
Link Overlap Fraction of common Edges

Mézard and Parisi, J. Physique, 47 (1986) 1285-1296
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Exotic Constraints

Optimal tour (T o)
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Exotic Constraints

Most different tour from optimum within some ε of length

minimize
∑

{i,j}∈T o

xij∑
i

∑
j<i

cijxij ≤ Lo + ε
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Exotic Constraints

Add a penalty to the optimal edges

minimize
∑
i

∑
j<i

cijxij +
ε

N

∑
{i,j}∈T o

xij
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Preliminary Results
The Euclidean TSP energy landscape seems trivial

everything we tested decays with increasing system size
Hints that conjectured replica symmetry holds

before tested for uncorrelated distances
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Thank you for listening

What’s the complexity class of the best linear programming cutting-plane techniques?
I couldn’t find it anywhere. Man, the Garfield guy doesn’t have these problems ...

CC BY-NC Randall Munroe http://xkcd.com/399/
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NP{,-complete,-hard}

I P
I decision problem
I solvable in polynomial-time
I e.g. “Is x prime?”

I NP
I decision problem
I verifiable in polynomial-time
I e.g. “Is x composite?”

I NP-hard
I any problem in NP can be reduced to

one in NP-hard
I e.g. TSP, Spinglass Groundstates

I NP-complete
I is the intersection of NP and NP-hard
I e.g. SAT, Vertex Cover, TSP-decision

NP

NP-hard

P

NP-complete

if P 6= NP
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Tortuosity

τ =
n− 1
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Tortuosity

τ =
n− 1

L
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i=1
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Tortuosity
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Tortuosity
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Stör-Wagner Global Minimum Cut7

I O(|V ||E|+ |V |2 log |V |)

1. find an arbitrary s-t-min-cut

2. merge s and t

3. repeat until one vertex is left

4. smallest encountered s-t-min-cut is global min-cut

7M. Stör and F. Wagner, JACM, 1997
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Blossom Inequalities

k∑
m=0

∑
i∈Sm,j /∈Sm

xij ≥ 3k + 1

k odd

Si ∩ Sj = ∅ ∀i, j ∈ {1, . . . , k}
S0 ∩ Si 6= ∅ ∀i ∈ {1, . . . , k}
Si \ S0 6= ∅ ∀i ∈ {1, . . . , k}
|Si| = 2 ∀i ∈ {1, . . . , k}
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Blossom Inequalities

k∑
m=0

∑
i∈Sm,j /∈Sm

xij ≥ 3k + 1

S1
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First Excitation: The Second Shortest Tour
Uniformly distributed cities in high dimensions 2 ≤ D ≤ 312.
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Runtime Measurements
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Universality

Same analysis with other ensembles (Gaussian displacement,
displacement in three dimensions, some blossom inequalities)

σc b

Degree relaxation σlpc = 0.51(4) blp = 0.29(6)

SEC relaxation σcpc = 1.07(5) bcp = 0.43(3)
στc = 1.06(23) –

σcp,gc = 0.47(3) bcp,g = 0.45(5)
στ,gc = 0.44(8) –

σcp,3c = 1.18(8) bcp,3 = 0.40(4)

fast Blossom rel. σfbc = 1.47(8) bfb = 0.40(3)
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