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Self-Avoiding Walks
I Different constructions with

different statistics

I Helpful for polymers, percolation
clusters, spanning trees, ...

I End-to-end distance
r ∝ T ν , ν ≥ 1/2
I in contrast to standard random

walk ν = 1/2

I SAW: Draw uniformly from all
configurations

I SKSAW: Growth model, do not
step on visited sites

Random Walk (RW)
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“True”Self-Avoiding Walk

I Record how often each site i is
visited ni

I Step on sites with probability

e−βni/Z

with Z =
∑

i∈neighbors e
−βni

I For large β, it will only step on
itself if it is trapped

I Edge cases:
I β = 0 is same as standard RW
I β � 1 similar SKSAW

“True” Self-Avoiding Walk (TSAW), ν = 1/2

D.J. Amit, G. Parisi, L. Peliti, Phys. Rev. B 27, 1635 (1983)
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itself if it is trapped

I Edge cases:
I β = 0 is same as standard RW
I β � 1 similar SKSAW

“True” Self-Avoiding Walk (TSAW), ν = 1/2

We are interested in the distribution of the area
A of the convex hull.
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Large Deviation Sampling Scheme

I Use Metropolis algorithm with acceptance pacc = e−∆A/Θ

I Treat area A of the convex hull as the “Energy”
I Simulate like a physical system at some “Temperature” Θ
I Markov chain of random number vectors ~ξ

Θ = −10

Θ = −2

Θ 
= 

±∞

Θ = 2
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Large Deviation Sampling Scheme

I Standard MCMC using Metropolis
algorithm to generate samples

I Biased histograms PΘ(A)

I Undo bias
P (A) = eA/ΘZ(Θ)PΘ(A)

I Determine free parameter Z(Θ) by
continuity

I Normalization for the actual
distribution
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Full Distributions
I Large deviation tail is a region of extended walks → no trapping
I Without trapping TSAW with large values of β are basically the same as SKSAW
I Smaller values of β interpolate to standard RW case
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Scaling
Usually the whole distribution scales like the end-to-end distance r and the dimension
of the observable (not just the mean)
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G. Claussen, A.K. Hartmann, S.N. Majumdar, Phys. Rev. E 91, 052104 (2015)
H. Schawe, A.K. Hartmann, S.N. Majumdar, Phys. Rev. E 96, 062101 (2017)
H. Schawe, A.K. Hartmann, S.N. Majumdar, Phys. Rev. E 97, 062159 (2018)
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Further Results and Conclusion

I ν can be used to scale the whole distribution (not just the means)

I The tail behavior is given by PT (A) ≈ e−TΦ with Φ(A) ∝ A1/d(1−ν)

I TSAW is the exception where the main part behavior does not predict the far tail
behavior – at least for large β
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Convex Hulls

I Characterizes point set

I Smallest convex polygon
containing every point

I Home range of animals

I Spatial extend of epidemics

I Construction of Voronoi Diagrams
/ Delaunay Triangulations

I Look at area A, circumference L
or volume V

E. Dumonteil, S.N. Majumdar, A. Rosso, A. Zoia, PNAS, 110, 4239 (2013)
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Large Deviation Principle and Rate Function Φ
I Assume Φ is a power law and simple scaling argument

Φ = − 1

T
lnP (S/Smax) ∝

(
S

Smax

)1/d(1−ν)

I Works very well for off-lattice Gaussian walks
I Works reasonably well for SKSAW, SAW and LERW
I But does not work for TSAW with large β
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H. Schawe, A.K. Hartmann, S.N. Majumdar, Phys. Rev. E 96, 062101 (2017)
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Φ = asκ, κ = 7/6

H. Schawe, A.K. Hartmann, S.N. Majumdar, Phys. Rev. E 97, 062159 (2018)

3/3 Schawe, Hartmann, Majumdar



Large Deviation Principle and Rate Function Φ
I Assume Φ is a power law and simple scaling argument

Φ = − 1

T
lnP (S/Smax) ∝

(
S

Smax

)1/d(1−ν)

I Works very well for off-lattice Gaussian walks
I Works reasonably well for SKSAW, SAW and LERW
I But does not work for TSAW with large β

10−3

10−2

10−1

100

10−2 10−1 100

TSAW, β = 100

Φ

s = A/Amax

128
256
512

1024
2048

Asymptotic Φ
Φ = asκ, κ = 1.167
Φ = asκ, κ = 1.000

3/3 Schawe, Hartmann, Majumdar


	Models and Methods
	Self-Avoiding Random Walks
	Large Deviation Sampling Scheme

	Results
	Full Distributions
	Scaling Relation

	Appendix

