
Linear Programming and Cutting Planes for
Ground States and Excited States of the

Traveling Salesperson Problem

Hendrik Schawe Jitesh Jha Alexander K. Hartmann

March 12, 2018



Traveling Salesperson Problem

Given a set of cities V and their pairwise distances cij , what is the
shortest tour visiting all cities and returning to the start?

Dantzig, Fulkerson, Johnson, Journal of the Operations Research Society of America,
1954, 42 cities
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Traveling Salesperson Problem

Given a set of cities V and their pairwise distances cij , what is the
shortest tour visiting all cities and returning to the start?

Applegate, Bixby, Chvátal, Cook, 2001, 15112 cities
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Traveling Salesperson Problem

Given a set of cities V and their pairwise distances cij , what is the
shortest tour visiting all cities and returning to the start?

Bosh, Herman, 2004, 100000 cities (not optimal, tour from 2009)
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What does the energy landscape look like?
trivial
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Random Field Ising
3-SAT (α < 3.86)
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SK Spinglasses
3-SAT (α > 3.86)

TSP?
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Test for Complex Energy Landscape

For N → ∞, can a finite increase in energy
change a finite fraction of the system?

Traveling Salesperson Problem
I compare two realizations

I T o the optimal tour
I T ∗ some excitation

I such that their relative length difference Lo−L∗

Lo ∼ O(1/N)

I does their difference grows as d ∼ O(N)⇔ d
N ∼ O(1)
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Traveling Salesperson Problem
I compare two realizations

I T o the optimal tour
I T ∗ some excitation

I such that their relative length difference Lo−L∗

Lo ∼ O(1/N)

I does their difference grows as d ∼ O(N)⇔ d
N ∼ O(1)

Mézard and Parisi, J. Physique, 47 (1986) 1285-1296
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Test for Complex Energy Landscape

For N → ∞, can a finite increase in energy
change a finite fraction of the system?

Traveling Salesperson Problem
I compare two realizations

I T o the optimal tour
I T ∗ some excitation

I such that their relative length difference Lo−L∗

Lo ∼ O(1/N)

I does their difference grows as d ∼ O(N)⇔ d
N ∼ O(1)

We just need to generate excitations!

Mézard and Parisi, J. Physique, 47 (1986) 1285-1296
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Test for Complex Energy Landscape

For N → ∞, can a finite increase in energy
change a finite fraction of the system?

Traveling Salesperson Problem
I compare two realizations

I T o the optimal tour
I T ∗ some excitation

I such that their relative length difference Lo−L∗

Lo ∼ O(1/N)

I does their difference grows as d ∼ O(N)⇔ d
N ∼ O(1)

We just need to generate excitations!
Oh, and the optimal tour.

Mézard and Parisi, J. Physique, 47 (1986) 1285-1296
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TSP as a Linear Program

let xij be the edge between cities i and j
xij = 1 if i and j are consecutive in the tour else 0
cij = dist(i, j) is the distance between city i and j

minimize
∑
i

∑
j<i

cijxij

for example

xij =


· 1 0 0 1
1 · 0 1 0
0 0 · 1 1
0 1 1 · 0
1 0 1 0 ·


is the cyclic tour (1, 2, 4, 3, 5)
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Constraints
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Constraints

∑
j

xij = 2 ∀i ∈ V

I every city needs 2 ways
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Constraints

∑
j

xij = 2 ∀i ∈ V

I every city needs 2 ways

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V

I kills subtours/loops

I kills some fractional
solutions

I global min-cut to find

A
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C

D

E

F

G

H
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Optimal Tour
minimize

∑
i

∑
j<i

cijxij

subject to xij ∈ {0, 1}∑
j

xij = 2 i = 1, 2, ..., N

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V
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Second Shortest Tour
minimize

∑
i

∑
j<i

cijxij

subject to xij ∈ {0, 1}∑
j

xij = 2 i = 1, 2, ..., N

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V

∑
{i,j}∈T o

xij< N
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Second Shortest Tour
For N → ∞, can a finite

increase in energy change

a finite fraction of the

system?

minimize
∑
i

∑
j<i

cijxij

subject to xij ∈ {0, 1}∑
j

xij = 2 i = 1, 2, ..., N

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V

∑
{i,j}∈T o

xij< N
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Shortest Half Different
For N → ∞, can a finite

increase in energy change

a finite fraction of the

system?

minimize
∑
i

∑
j<i

cijxij

subject to xij ∈ {0, 1}∑
j

xij = 2 i = 1, 2, ..., N

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V

∑
{i,j}∈T o

xij≤ N/2
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Most Different Short Tour
For N → ∞, can a finite

increase in energy change

a finite fraction of the

system?

minimize
∑

{i,j}∈T o

xij

subject to xij ∈ {0, 1}∑
j

xij = 2 i = 1, 2, ..., N

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V

∑
i

∑
j<i

cijxij≤ Lo + ε

9/12 Schawe, Jha, Hartmann



Results

Euclidean TSP in plane is trivial

For N → ∞, can a finite

increase in energy change

a finite fraction of the

system?
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Results

Euclidean TSP in plane is trivial

For N → ∞, can a finite

increase in energy change

a finite fraction of the

system?
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Results

Disturbed Square Lattice (σ ∼ 1
N )

is complex

For N → ∞, can a finite

increase in energy change

a finite fraction of the

system?
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Results

Disturbed Square Lattice (σ ∼ 1
N )

is complex

For N → ∞, can a finite

increase in energy change

a finite fraction of the

system?
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This is how the energy landscape looks like

trivial

c

E
ε

Euclidean TSP
Diluted TSP
“SK TSP”

complex

c

E
ε

Disturbed Square Lattice TSP
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Thank you for listening

What’s the complexity class of the best linear programming cutting-plane techniques?
I couldn’t find it anywhere. Man, the Garfield guy doesn’t have these problems ...

CC BY-NC Randall Munroe http://xkcd.com/399/
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NP{,-complete,-hard}

I P
I decision problem
I solvable in polynomial-time
I e.g. “Is x prime?”

I NP
I decision problem
I verifiable in polynomial-time
I e.g. “Is x composite?”

I NP-hard
I any problem in NP can be reduced to

one in NP-hard
I e.g. TSP, Spinglass Groundstates

I NP-complete
I is the intersection of NP and NP-hard
I e.g. SAT, Vertex Cover, TSP-decision

NP

NP-hard

P

NP-complete

if P 6= NP
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Stör-Wagner Global Minimum Cut7

I O(|V ||E|+ |V |2 log |V |)

1. find an arbitrary s-t-min-cut

2. merge s and t

3. repeat until one vertex is left

4. smallest encountered s-t-min-cut is global min-cut

7M. Stör and F. Wagner, JACM, 1997
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Blossom Inequalities

k∑
m=0

∑
i∈Sm,j /∈Sm

xij ≥ 3k + 1

k odd

Si ∩ Sj = ∅ ∀i, j ∈ {1, . . . , k}
S0 ∩ Si 6= ∅ ∀i ∈ {1, . . . , k}
Si \ S0 6= ∅ ∀i ∈ {1, . . . , k}
|Si| = 2 ∀i ∈ {1, . . . , k}
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Blossom Inequalities

k∑
m=0

∑
i∈Sm,j /∈Sm

xij ≥ 3k + 1

S1

S2

S3

S4
S5

S0
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