

Linear Programming and Cutting Planes for Ground States and Excited States of the Traveling Salesperson Problem

Hendrik Schawe Jitesh Jha Alexander K. Hartmann

March 12, 2018

Traveling Salesperson Problem

Given a set of cities V and their pairwise distances c_{ij} , what is the shortest tour visiting all cities and returning to the start?

Dantzig, Fulkerson, Johnson, Journal of the Operations Research Society of America, 1954, 42 cities

Traveling Salesperson Problem

Given a set of cities V and their pairwise distances c_{ij} , what is the shortest tour visiting all cities and returning to the start?

Applegate, Bixby, Chvátal, Cook, 2001, 15112 cities

Traveling Salesperson Problem

Given a set of cities V and their pairwise distances c_{ij} , what is the shortest tour visiting all cities and returning to the start?

Bosh, Herman, 2004, 100000 cities (not optimal, tour from 2009)

What does the energy landscape look like? trivial complex EEC

Random Field Ising 3-SAT ($\alpha < 3.86$)

SK Spinglasses 3-SAT ($\alpha > 3.86$)

TSP?

For $N \to \infty$, can a **finite** increase in energy change a **finite fraction** of the system?

For $N \to \infty$, can a **finite** increase in energy change a **finite fraction** of the system?

Traveling Salesperson Problem

- compare two realizations
 - ▶ T^o the optimal tour
 - ► T^{*} some excitation
- ▶ such that their relative length difference $\frac{L^o L^*}{L^o} \sim O(1/N)$
- \blacktriangleright does their difference grows as $d\sim \mathcal{O}(N) \Leftrightarrow \frac{d}{N}\sim \mathcal{O}(1)$

For $N \to \infty$, can a **finite** increase in energy change a **finite fraction** of the system?

Traveling Salesperson Problem

- compare two realizations
 - ▶ T^o the optimal tour
 - ► T^{*} some excitation
- such that their relative length difference $\frac{L^o L^*}{L^o} \sim \mathcal{O}(1/N)$
- does their difference grows as $d \sim \mathcal{O}(N) \Leftrightarrow \frac{d}{N} \sim \mathcal{O}(1)$

We just need to generate excitations!

Mézard and Parisi, J. Physique, 47 (1986) 1285-1296

For $N \to \infty$, can a **finite** increase in energy change a **finite fraction** of the system?

Traveling Salesperson Problem

- compare two realizations
 - T^o the optimal tour
 - ► T^{*} some excitation
- such that their relative length difference $\frac{L^o L^*}{L^o} \sim \mathcal{O}(1/N)$
- does their difference grows as $d \sim \mathcal{O}(N) \Leftrightarrow \frac{d}{N} \sim \mathcal{O}(1)$

We just need to generate excitations! Oh, and the optimal tour.

Mézard and Parisi, J. Physique, 47 (1986) 1285-1296

TSP as a Linear Program

let x_{ij} be the edge between cities i and j $x_{ij} = 1$ if i and j are consecutive in the tour else 0 $c_{ij} = \text{dist}(i, j)$ is the distance between city i and j

$$\mathsf{minimize} \sum_i \sum_{j < i} c_{ij} x_{ij}$$

for example

$$x_{ij} = \begin{pmatrix} \cdot & 1 & 0 & 0 & 1 \\ 1 & \cdot & 0 & 1 & 0 \\ 0 & 0 & \cdot & 1 & 1 \\ 0 & 1 & 1 & \cdot & 0 \\ 1 & 0 & 1 & 0 & \cdot \end{pmatrix}$$

is the cyclic tour (1, 2, 4, 3, 5)

$$\sum_{j} x_{ij} = 2 \quad \forall i \in V$$

every city needs 2 ways

$$\sum_{j} x_{ij} = 2 \quad \forall i \in V$$

every city needs 2 ways

$$\sum_{j} x_{ij} = 2 \quad \forall i \in V$$

every city needs 2 ways

$$\sum_{i \in S, j \notin S} x_{ij} \ge 2 \quad \forall S \subset V$$

- ► kills subtours/loops
- kills some fractional solutions
- ▶ global min-cut to find

Optimal Tour

minimize

subject to

Second Shortest Tour

minimize

subject to

Second Shortest Tour

minimize

subject to

For $N \to \infty$, can a finite increase in energy change a finite fraction of the system?

Shortest Half Different

minimize

subject to

For $N \to \infty$, can a finite increase in energy change a finite fraction of the system?

Most Different Short Tour

minimize

subject to

For $N \rightarrow \infty$, can a finite increase in energy change a finite fraction of the system?

Euclidean TSP in plane is trivial

For $N \rightarrow \infty$, can a **finite** increase in energy change a **finite fraction** of the system?

Euclidean TSP in plane is trivial

For $N \to \infty$, can a finite increase in energy change a finite fraction of the system?

Schawe, Jha, Hartmann

Disturbed Square Lattice ($\sigma \sim \frac{1}{N}$) is complex

For $N \to \infty$, can a finite increase in energy change a finite fraction of the system?

Disturbed Square Lattice $(\sigma \sim \frac{1}{N})$ is complex

For $N \to \infty$, can a finite increase in energy change a finite fraction of the system?

This is how the energy landscape looks like

Euclidean TSP Diluted TSP "SK TSP"

Disturbed Square Lattice TSP

Thank you for listening

What's the complexity class of the best linear programming cutting-plane techniques? I couldn't find it anywhere. Man, the Garfield guy doesn't have these problems ...

CC BY-NC Randall Munroe http://xkcd.com/399/

$NP\{,-complete,-hard\}$

► P

- decision problem
- solvable in polynomial-time
- ▶ e.g. "Is x prime?"

► NP

- decision problem
- verifiable in polynomial-time
- ▶ e.g. "Is *x* composite?"
- NP-hard
 - any problem in NP can be reduced to one in NP-hard
 - e.g. TSP, Spinglass Groundstates
- ► NP-complete
 - ▶ is the intersection of NP and NP-hard
 - ▶ e.g. SAT, Vertex Cover, TSP-decision

Stör-Wagner Global Minimum Cut⁷

 $\blacktriangleright \mathcal{O}(|V||E| + |V|^2 \log |V|)$

- 1. find an arbitrary s-t-min-cut
- 2. merge s and t
- 3. repeat until one vertex is left
- 4. smallest encountered s-t-min-cut is global min-cut

⁷M. Stör and F. Wagner, JACM, 1997

Blossom Inequalities

$$\sum_{m=0}^{k} \sum_{i \in S_m, j \notin S_m} x_{ij} \ge 3k+1$$

 $k \mathsf{ odd}$

$$\begin{split} S_i \cap S_j &= \varnothing & \forall i, j \in \{1, \dots, k\} \\ S_0 \cap S_i &\neq \varnothing & \forall i \in \{1, \dots, k\} \\ S_i \setminus S_0 &\neq \varnothing & \forall i \in \{1, \dots, k\} \\ |S_i| &= 2 & \forall i \in \{1, \dots, k\} \end{split}$$

Blossom Inequalities

Blossom Inequalities

