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Large deviations of convex hulls of self-avoiding random walks
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A global picture of a random particle movement is given by the convex hull of the visited points. We obtained
numerically the probability distributions of the volume and surface of the convex hulls of a selection of three types
of self-avoiding random walks, namely, the classical self-avoiding walk, the smart-kinetic self-avoiding walk,
and the loop-erased random walk. To obtain a comprehensive description of the measured random quantities,
we applied sophisticated large-deviation techniques, which allowed us to obtain the distributions over a large
range of support down to probabilities far smaller than P = 10−100. We give an approximate closed form of the
so-called large-deviation rate function � which generalizes above the upper critical dimension to the previously
studied case of the standard random walk. Further, we show correlations between the two observables also in the
limits of atypical large or small values.
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I. INTRODUCTION

The standard random walk is a simple Markovian process
which has a history as a model for diffusion. There are many
exact results known [1]. If memory is added to the model,
e.g., to interact with the past trajectory of the walk, analytic
treatment becomes much harder. A class of self-interacting
random walks that we will focus on in this study are self-
avoiding random walks, which live on a lattice and do not visit
any site twice. This can be used to model systems with excluded
volume, e.g., polymers whose single monomers cannot occupy
the same site at once [2]. There are more applications which are
not as obvious, e.g., a slight modification of the smart-kinetic
self-avoiding walk traces the perimeter of critical percolation
clusters [3], while the loop-erased random walk can be used
to study spanning trees [4] (and vice versa [5]).

One of the central properties of random walk models is the
exponent ν, which characterizes the growth of the end-to-end
distance r with the number of steps T , i.e., r ∝ T ν . While this
has the value ν = 1/2 for the standard random walk, its value
is larger for the self-avoiding variations, which are effectively
pushed away from their past trajectory. In two dimensions,
this value (and other properties) can often be obtained by the
correspondence to Schramm-Loewner evolution [6–9]. But
between two dimensions and the upper critical dimension,
above which the behavior is the same as the standard random
walk, Monte Carlo simulations are used to obtain estimates for
the exponent ν.
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Here we want to study the convex hulls of a selection of
self-avoiding walk models featuring larger values of ν. The
convex hull allows one to obtain a global picture of the space
occupied by a walk without exposing all details of the walk. As
an example, convex hulls are used to describe the home ranges
of animals [10–12] or the spatial extent of animal epidemics
[13]. In physics, they have been proposed to be applied for
the analysis of surface diffusion or the detection of binding
of molecules [14]. Here, more fundamentally, we will look at
the smart-kinetic self-avoiding walk (SKSAW), the classical
self-avoiding walk (SAW), and the loop-erased random walk
(LERW), since they span a large range of ν values and are well
established in the literature. About the convex hulls of standard
random walks, we already know plenty of properties. The mean
perimeter and area have been known exactly for over 20 years
[15,16] for large walk lengths T , i.e., the Brownian motion
limit. Since then simpler and more general methods were
devised based on Cauchy’s formula which relates the support
function of a curve to the perimeter and the area enclosed by
the curve [17,18]. More recently, also the mean hypervolume
and surface for arbitrary dimensions was calculated [19]. For
discrete-time random walks with jumps from an arbitrary
distribution, the perimeters of the convex hull for finite (but
large) walk lengths T were computed explicitly [20]. For the
case of Gaussian jump lengths, even an exact combinatorial
formula for the volume in arbitrary dimensions is known [21].
For the variance there is an exact result for Brownian bridges
[22]. Concerning the full distributions, no exact analytical
results are available. Here sophisticated large-deviation sim-
ulations were used to numerically explore a large part of the
full distribution, i.e., down to probabilities far smaller than
10−100 [23–25]. Numerical studies of this kind, which are
able to obtain the distribution over a wide range including
the extreme tails, are useful to check predictions about, e.g.,
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large-deviation rate functions such as discussed in Ref. [26].
Furthermore, they can explore new territory and stimulate other
studies of large-deviation properties. For example Ref. [23]
shows numerical results that the distribution of area and
perimeter of the convex hulls of planar standard random walks
obey the large-deviation principle, which was later proven
by Ref. [27].

Despite this increasing interest in the convex hulls of
standard random walks, there seem to be no studies treating the
convex hulls of self-avoiding walks. To fill this void, we use
Markov chain Monte Carlo sampling to obtain the distributions
of some quantities of interest over their whole support. To
connect to previous studies [23–25] we also compare the
aforementioned variants to the standard random walk on a
square lattice (LRW). We are mainly interested in the full
distribution of the area A and the perimeter L of d = 2
dimensional hulls for walks in the plane, since the effects of
the self-interactions are stronger in lower dimensions, but we
will also look into the volume V in the d = 3 dimensional
case. In the past study on standard random walks [25] we
found that the full distribution can be scaled to a universal
distribution using only the exponent ν and the dimension for
large walk lengths T . For the present case, where a walk might
depend on its full history, one could expect a more complex
behavior. Nevertheless, our results presented below show con-
vincingly that also for self-interacting walks the distributions
are universal and governed mainly by the exponent ν, except
for some finite-size effects, which are probably caused by the
lattice structure. Furthermore, we use the distributions to obtain
empirical large-deviation rate functions [28], which suggests
that a limiting rate function is mathematically well defined. We
also give an estimate for the rate function, which is compatible
with the known case of standard random walks and with all
cases under scrutiny in this study.

II. MODELS AND METHODS

This section gives a short overview over the models and
methods used, with references to literature more specialized
on the corresponding subject. Where we deem adequate, also
technical details applicable for this study are mentioned.

A. Sampling scheme

To generate the whole distribution of the area or perimeter
of the convex hull of a random walk over its full support, a
sophisticated Markov chain Monte Carlo (MCMC) sampling
scheme is applied [29,30]. The Markov chain is here a sequence
of different walk configurations. The fundamental idea is to
treat the observable S, i.e., the perimeter, area, or volume, as
the energy of a physical system which is coupled to a heat bath
with adjustable “temperature” � and to sample its equilibrium
distribution using the Markov chain. This can be easily done
using the classical Metropolis algorithm [31]. Therefore the
current walk configuration is changed a bit. (The precise type
of change is dependent on the type of walk we are looking at
and is explained in the following sections.) The changes must
be designed in a way that any configuration can be reached
from any other configuration in finite time, i.e., ergodicity
must be given. The change is accepted with the acceptance
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FIG. 1. Typical SAW configurations with T = 200 steps and their
convex hulls at different temperatures �. � = ±∞ corresponds to a
typical configuration without bias.

probability

pacc = min{1, e−�S/�} (1)

and rejected otherwise, which fulfills detailed balance. This
means, at long times the Markov process yields con-
figurations C from its equilibrium distribution Q�(C) =

1
Z(�)Q(C) e−S(C)/�, with the partition function Z(�). For the
distribution of the observable P (S) this means

P�(S) =
∑

{C|S(C)=S}
Q�(C) (2)

=
∑

{C|S(C)=S}

exp(−S/�)

Z(�)
Q(C) (3)

= exp(−S/�)

Z(�)
P (S). (4)

That means the “temperature” � will bias the configuration
towards specific ranges of the “energy” S. Configurations at
small and negative � will show larger than typical S; small
and positive � show smaller than typical S and large values
independent of the sign sample configurations from the peak
of the distribution. Figure 1 shows typical walk configurations
of the self-avoiding walk at different values of �.

In a second step, histograms of the equilibrium distribution
P�(S) are corrected for the bias introduced via �. Using
Eq. (4), we can easily remove this bias and arrive at the
unbiased distribution

P (S) = eS/� Z(�)P�(S). (5)

The free parameter Z(�) can be obtained by enforcing continu-
ity and normalization of the distribution. This necessitates that
we perform this sampling at multiple � such that there are good
statistics over the whole range and overlapping histograms
from which to choose Z(�), so that the overlapping regions
coincide, i.e., the distribution is continuous. This, at the same
time, serves as a quality estimate of the Markov process,
since the overlaps will only coincide cleanly over their whole
range if the samples were taken in equilibrium. So a clean
coincidence is a strong hint at a good quality of the data.
Further details and examples can be found in several other
articles, where it has been applied and explained for specific
models [26,29,30,32–35], but also in a very general form [36].
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In particular, the algorithm was already used successfully in
other studies looking at the large deviation properties of convex
hulls of random walks [23,24].

B. Lattice random walk

All of the self-interacting random walks, which are the focus
of this study, are typically treated on a lattice. Hence, we will
start by introducing the simple, i.e., noninteracting, isotropic
random walk on a lattice. For simplicity we will use a square
lattice with a lattice constant of 1. A realization consists of T

randomly chosen discrete steps δi . Here we use steps between
adjacent lattice sites, i.e., d-dimensional Cartesian base vectors
ei , which are drawn uniformly from {±ei}. The realization can
be defined as the tuple of the steps (δ1,...,δT ) and the position
at time τ as

x(τ ) = x0 +
τ∑

i=1

δi . (6)

Here we set the start point x0 at the coordinate origin. The set
of visited sites is therefore P = {x(0), . . . ,x(T )}.

The central quantity of the LRW is the average end-to-end
distance

r =
√

〈(x(T ) − x0)2〉 , (7)

where 〈. . .〉 denotes the average over the disorder. It grows
polynomially and is characterized by the exponent ν via r ∝
T ν . For the LRW it is ν = 1/2, which is typical for all diffusive
processes.

As the change move for the Metropolis algorithm, we
replace a randomly chosen δi by a new randomly drawn
displacement. This way we can clearly reach any possible
configurations, i.e., ergodicity holds. Since our quantity of
interest is the convex hull, i.e., a global property of the walk, we
do not profit much from local moves, e.g., crankshaft moves.
Thus we use this simple, global move.

C. Smart-kinetic self-avoiding walk

The smart-kinetic self-avoiding walk [3,37] is probably the
most naive approach to a self-avoiding walk. It grows on a
lattice and never enters sites it already visited. Since it is
possible to get trapped on an island inside already-visited sites,
this walk needs to be smart enough to never enter such traps.

In d = 2 it is possible to avoid traps using just local
information in constant time using the winding angle method
[37]. In conjunction with hash table backed detection of
occupied sites, a realization with T steps can be constructed in
time O(T ).

This method will typically yield longer stretched walks than
the LRW due to the constraint that it needs to be self-avoiding.
This can be characterized by the exponent ν, which is larger
than 1/2 in d = 2.

The sketch of Fig. 2 shows that this ensemble does not
contain every configuration with the same probability but
prefers closely winded configurations. This is also visible in
Fig. 3(b). This is characterized by the exponent ν = 4/7 [9],
which is larger than ν for the LRW but smaller than for the
SAW. Also note that it is conjectured that the upper critical
dimension is d = 3 [37], i.e., ν = 1/2 for all d � 3—possibly
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FIG. 2. Decision tree visualizing the probability to arrive at
certain configurations following the construction rules of the SKSAW.
Not all possible configuration have the same probability, and hence
this rule defines a different ensemble than SAW.

with logarithmic corrections in d = 3. Therefore only d = 2
is simulated in this study.

While it is easy to draw realizations from this ensemble
uniformly, i.e., simple sampling, it is not so straightforward
to apply the MCMC changes. If one just changes single steps
like for the LRW and accepts if it is self-avoiding or rejects if it
is not, one will generate all self-avoiding walk configurations
with equal probability. Our approach to generate realizations
according to this ensemble handles the construction of the
walk as a black box. It acts on the random numbers used
to generate a realization from scratch. During the MCMC
at each iteration one random number is replaced by a new
random number and a SKSAW realization is regenerated from
scratch using the modified random numbers [36]. Since every
configuration of underlying random numbers can occur this
way, every possible SKSAW configuration can be constructed,
such that this protocol is ergodic. This change is then accepted
according to Eq. (1) and undone otherwise.

FIG. 3. Typical configurations with T = 200 steps, drawn uni-
formly from the corresponding ensembles, of all types of random
walks under scrutiny in this study with their convex hulls.
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D. Self-avoiding random walk

While the above-mentioned SKSAW does produce self-
avoiding walks, SAW denotes another ensemble, the ensemble
where realizations are drawn uniformly from the set of all
self-avoiding configurations. It is not trivial to sample from
this distribution efficiently. The black-box method used for
SKSAW is not feasible, since the construction of a SAW
takes time exponential in the length with simple methods
like dimerization [2,38]. It is possible to perform changes
directly on the walk configuration and accept them according
to Eq. (1), but their rejection rate is typically quite high and
the resulting configurations are very similar [2], which makes
this inefficient. The state-of-the-art method to sample SAW
is the pivot algorithm [2]. It chooses a random point and
uses it as the pivot for a random symmetry operation, i.e.,
rotation or mirroring. If the resulting configuration is not
self-avoiding, it is rejected. Otherwise we accept it with the
temperature-dependent acceptance probability Eq. (1).

As mentioned previously, the exponent ν = 3/4 [7] is larger
than for the SKSAW. Since the upper critical dimension for
SAW is d = 4, this study will also look at d = 3, where an
exact value of ν is not known and the best estimate is ν =
0.587 597(7) [39], though our focus is on d = 2 for this type.

While there are highly efficient implementations of the pivot
algorithm [39,40], the time complexity of the problem at hand
is dominated by the time needed to construct the convex hull;
thus we go with the simple hash-table-based O(T ) approach
[2].

E. Loop-erased random walk

The LERW [41] uses a different approach to achieve the
self-avoiding property. It is built as a simple LRW, but each
time a site is entered for the second time, the loop that is formed,
i.e., all steps since the first entering of this site, is erased. While
this ensures no crossings in the walk, the resulting ensemble
is different from the SAW ensemble and the walks are longer
stretched out, as characterized by the larger exponent ν = 4/5
[5,8,42]. Similar to the SAW, the upper critical dimension is
d = 4 and an estimate for d = 3 is ν = 0.615 76(2) [43].

For construction—similar to SKSAW—we need to keep
all used random numbers and change them in the MCMC
algorithm. This leads to a dramatically higher memory con-
sumption than simple sampling, where each loop can be
discarded as soon as it is closed.

F. Convex hulls

We will study the convex hulls C of the sites visited by the
random walkP . The convex hull of a point setP is the smallest
polytope containing all points Pi ∈ P and all line segments
(Pi,Pj ). Some example hulls are shown in Fig. 3.

Convex hulls are one of the most basic concepts
in computational geometry,1 with noteworthy application

1Three of the first four examples for static problems of
computational geometry in Wikipedia can utilize convex hulls for their
solution (https://en.wikipedia.org/wiki/Computational_geometry,
12.01.2018).

in the construction of Voronoi diagrams and Delaunay
triangulations [44].

For point sets in the d = 2 plane, we use Andrew’s mono-
tone chain [45] algorithm for its simplicity and Quickhull [46]
as implemented by QHULL [47] ford = 3. Both algorithms have
a time complexity of O(T ln T ). In d = 2 Andrew’s monotone
chain algorithm results in ordered points of the convex hull.
Adjacent points (i,j ) in this ordering are the line segments of
the convex hull. Quickhull results in the simplicial facets of
the convex hull.

To obtain the perimeter of a d = 2 convex hull, we sum
the lengths of its line segments Lij . To calculate the area and
the volume, we use the same fundamental idea. In both cases
we subdivide the area/volume into simplexes, i.e., triangles
for the area and tetrahedra for the volume. Therefore we
choose an arbitrary fixed point p0 inside of the convex hull
and construct a simplex for each facet fm, i.e., for d = 2 each
line segment of the hull fm = (i,j ) forms a triangle (i,j,p0),
and each triangular face fm = (i,j,k) of a d = 3 dimensional
polyhedron forms a tetrahedron with p0. The volume of a
triangle is trivially

Aijp0 = 1
2 dist(fm,p0)Lij ,

where dist(fm,p0) is the perpendicular distance from a facet
fm to a point p0. Since the union of all triangles built this way
is the whole polygon, the sum of their areas is the area of the
polygon. Similarly, the volume of a polyhedron is the sum of
the volumes of all tetrahedra constructed from its faces. The
volume of the individual tetrahedra is given by

Vijkp0 = 1
3 dist(fm,p0)Aijk.

For random walks on a lattice with T steps of length 1 in d

dimensions the maximum volume is

Smax = (T/de)de

de!
(8)

for T divisible by the effective dimension de of the observable,
e.g., 2 for the area of a planar hull or 3 for the volume in three
dimensions. For example, the configuration of maximum area
corresponds to an L shape, i.e., Amax = T 2

8 . This form can be
derived by the general volume of a d-dimensional simplex
defined by its d + 1 vertices vi [48]:

V = 1

d!
det (v1 − v0, . . . ,vd − v0). (9)

Without loss of generality, we set v0 to be the coordinate
origin. To achieve maximum volume all vi ,i > 0 need to be
orthogonal and of equal length. Thus a random walk going T/d

steps along some base vector ei and continuing with T/d steps
in direction ei+1 has a convex hull defined by the tetrahedron
specified by vi = ∑i

j=1
T
d

ej . The matrix M = (v1, . . . ,vd ) is
thus triangular and its determinant is the product of its diagonal
entries Mii = T

d
, which leads directly to Eq. (8). An exception

occurs in d = 2, where the perimeter is Lmax = 2T .

III. RESULTS

The focus of this work lies on d = 2 dimensional SAW and
LERW. The results for higher dimensions and for SKSAW are
generated with less numerical accuracy. The LRW results also
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have a lower accuracy, as their purpose is mainly to scrutinize
the effect of the lattice structure underlying all considered walk
types in comparison to the nonlattice results from [25]. Also,
not all combinations are simulated but only those listed with a
value in Table II.

The same raw data is evaluated for equidistant bins and log-
arithmic bins. And the respective variants are shown according
to the scaling of the x axis.

A. Correlations

To get an intuition for how the configurations with atypical
large areas A or perimeters L look like, we visualize the
correlation between these two observables as scatter plots in
Fig. 4.

Since the smallest possible SAW is an (almost) fully filled
square, there cannot be instances below some threshold, which
explains the gaps on the left side of the scatter plots and of
the distributions shown in the following section. In the center
of the scatter plots, which is already in probability regions
far beyond the capabilities of simple sampling methods, the
behavior becomes strongly dependent on the bias.

If biasing for large perimeters (top), the area shows a
nonmonotonous behavior. First, somehow larger perimeters
come along typically with larger areas for entropic reasons,
i.e., there are fewer configurations which are long and thin, and
more bulky, which have a larger area. Though, for the far-right
tail, the only configurations with extreme large perimeters are
almost linelike and thus have a very small area. Also note that
the excluded volume effect of the SAW leads to overall larger
areas at the same perimeters.

On the other hand, when biasing for large areas (bottom)
the configurations with largest area, which are L-shaped
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FIG. 4. The top row shows data from simulations biasing towards
larger (and smaller) than typical perimeters L. The bottom row biases
the area A. The left column shows data from LRW and the right
from SAW both with T = 512 steps. The results of simple sampling
are shown in black. Note that only very narrow parts are covered by
simple sampling for the LRW.

(cf. Fig. 1), unavoidably have quite large perimeters; hence
the scatter plots show an almost linear correlation between area
and perimeter. Since the configurations of large areas naturally
avoid self-intersections, since steps on already visited points do
not enlarge the convex hull, the differences between LRW and
SAW diminish in the right tail. Note that with the large-area
bias, no walks with the very extreme perimeters exist, for the
reason already mentioned.

Note, however, that these scatter plots are very dependent on
which observable we are biasing for. In principle we observe
that small perimeters are strongly correlated with small areas,
while for large but not too large perimeters, there is a broad
range of area sizes possible. For extremely large perimeters,
the area must be small. For a comprehensive analysis, one
would need a full two-dimensional histogram, which could be
obtained using Wang-Landau sampling but which is beyond the
scope of this study and would require a much larger numerical
effort. Nevertheless, from looking at Fig. 4 one can anticipate
that the two-dimensional histogram would exhibit a strong
correlation for small values of L and a broad scatter of the
accessible values of A for larger but not too large values of L.

B. Moments and distributions

The distributions of the different walk types differ consid-
erably. This can be observed in Fig. 5, where distributions of
the area A for all types with T = 1024 steps are drawn. The
main part of the distribution shifts to larger values for larger
values of ν as expected, and the probability of atypically large
areas is boosted even more in the tails.

In the right tail, the distributions seem to bend down. Below,
where we show results for different walk sizes T , we see
that this is a finite-size effect of the lattice structure and the
fixed step length. This can be seen also as follows: Since
the lattice together with the fixed step length sets an upper
bound on the area, the probability plummets near this bound
for entropic reasons, i.e., there are for any walk length T only
eight configurations with maximum area (due to symmetries)
such that all self-avoiding types will meet at this point (not
visible because the bins are not fine enough).
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FIG. 5. Distribution of all scrutinized walk types with T = 1024
steps. The vertical line at Amax = 131 072 denotes the maximum area
[Eq. (8)], i.e., SAW and LERW are sampled across their full support
and SKSAW and LRW are not. The inset shows the peak region.
The gap on the left is due to excluded volume effects, i.e., there are
no configurations with area below some threshold, since this would
require self-intersection.
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This is supported from Ref. [23], which shows that the
distribution P (A) for standard random walks with Gaussian
jumps, i.e., without lattice or fixed step length, do not bend
down and have an exponential right tail. We conclude that the
deviations from this are thus caused by this difference.

First we will look at the rescaled means μS = 〈S〉/T deν ,
where S is an observable and de its effective dimension, as
introduced above in Eq. (8). The scaling is a combination of
the scaling of the end-to-end distance r ∝ T ν and the typical
scaling that a d-dimensional observable scales as rd with a
characteristic length r .

Nevertheless, due to finite-size corrections, the ratios μS =
〈S〉/T deν will still depend on the walk length. Thus, the
measured estimates μS = μS(T ) at specific walk lengths T

need to be extrapolated to get an estimate of the asymptotic
value μ∞

S = limT →∞ μS(T ). For the extrapolation we use [25]

μS(T ) = μ∞
S + C1T

−1/2 + C2T
−1 + o(T −1). (10)

This choice is motivated by a large-T expansion for the area
A (de = 2) of the convex hulls of standard random walks (ν =
1/2) with Gaussian jumps [20],

〈A〉
T

= π

2
+ γ

√
8π T −1/2 + π (1/4 + γ 2) T −1 + o(T −1),

(11)

where the constant γ = ζ (1/2)/
√

2π = −0.582 59 . . . . A nat-
ural guess for a generalization to observables of a different
effective dimension de [25] and different walk types would be
a similar behavior with different coefficients like Eq. (10).

Indeed, using this form to estimate the asymptotic means
μ∞

S of the observable S yields good fits, as visible in Fig. 6.
In fact, for the fit quality we obtain χ2

red values between 0.4
and 1.7. (The fit ranges for SKSAW begin at T = 512, and for
LRW, SAW, and LERW at T = 128, hinting at more severe
corrections to scaling for the former.) We assume that the
scaling is thus valid for arbitrary random walk types. The
resulting fit parameters are shown in Table I.

For standard random walks with Gaussian jumps the asymp-
totic means μ∞

S,Gaussian are known [19]. These results can
be used to predict the corresponding values for LRW. First
consider the following heuristic argument for a d = 2 square
lattice. On average a random walk takes the same amount
of steps in x and y direction such that on average two steps
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FIG. 6. Scaled means μA = 〈A〉/T 2ν and μL = 〈L〉/T ν for dif-
ferent walk types. The lines are fits to extrapolate the asymptotic
values shown in Table I according to Eq. (10). Error bars of the values
are smaller than the line of the fit and are not shown for clarity.

TABLE I. Asymptotic mean values extrapolated from simula-
tional data and the exactly known values for the standard random
walk (LRW). The columns labeled with μ∞

L and μ∞
A are for d = 2,

those labeled with μ∞
∂V and μ∞

V are for d = 3. For d = 3 we did not
simulate the SKSAW, see Sec. II C. Also, SAW has lower accuracy
because of fewer samples in d = 3.

μ∞
L μ∞

A μ∞
∂V μ∞

V

LRW (exact) 3.5449... 0.7854... 2.0944... 0.21440...
LRW 3.5441(7) 0.7852(2) 2.0945(4) 0.21445(4)
SKSAW 4.5355(12) 1.2642(5)
SAW 0.8233(7) 0.7714(1) 2.070(2) 0.1998(2)
LERW 2.1060(3) 0.2300(1) 1.6436(2) 0.13908(3)

displace the walker by
√

2, i.e., the diagonal of a square. In
contrast, a Gaussian walker with variance 1 will be displaced
on average by 1 every step. To make both types comparable,
we can increase the lattice constant to

√
2, which leads to an

average displacement of 1 per step for the LRW. Using the same
argumentation for higher dimensions, we can use the trivial
scaling with the lattice constant Sde and the length of the diag-
onal of a unit hypercube d1/2 to derive a general conversion:

μ∞
S,LRW = μ∞

S,Gaussian/d
de/2. (12)

These known results are listed next to our measurements
in Table I and are within error bars compatible with our
measurements.

Since we have data for whole distributions, a natural
question is whether this scaling does apply over the whole
support of the distribution. There is evidence that this is
true for the convex hulls of standard random walks [23] in
arbitrary dimensions [25]. That means the distributions of an
observable S for different walk lengths T should collapse onto
one universal function

P (S) = T −deνP̃ (ST −deν). (13)

Figure 7 shows the distributions of the d = 2 area of all
considered random walk types scaled according to Eq. (13).
The curves collapse well in the peak region and in the
intermediate-right tail. In the far-right tail, clear deviations
from a universal curve are obvious, which are the mentioned
finite-size effects caused by the lattice.

The distributions look qualitatively similar, though with
weaker finite-size effects, i.e., a better collapse, for the perime-
ter L (not shown). In d = 3, where we have studied the volume,
the results also look similar but exhibit stronger finite-size
effects (not shown).

Using the full distributions at different values of the walk
length PT , we can test if it obeys the large-deviation principle,
i.e., if � exists, such that the distribution scales as

PT ≈ e−T � (14)

for large values of T [28]. To simplify comparison, the support
of the rate function is usually normalized to [0,1]. Here we
achieve this by using the maximum Eq. (8). Solving Eq. (14)
for � results in

�(S/Smax) = − 1

T
ln P (S/Smax). (15)
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FIG. 7. Distributions of the area of different types of random walks scaled according to Eq. (13) for different walk lengths T .

We plot this for a selection of our results in Fig. 8. From
these plots, � seems to approximately follow a power law in
the intermediate-right tail, while the finite-size effects caused
by the lattice play a major role in the far-right tail, which
consequently “bends up.”

Assuming that the rate function behaves approximately as
a power law, which seems consistent with our data shown in
Fig. 8, i.e.,

�(s) ∝ sκ , (16)

the exponent κ can be estimated by combining the definition
of � Eq. (14) with the scaling assumption Eq. (13) as follows;
note that for clarity we use here Smax ∝ T de :

exp(−T �(S/T de )) ≈ 1

T νde
P̃ (S/T νde ). (17)

The 1/T νde term on the right-hand side can be ignored next
to the exponential. Since the right-hand side is a function of
S/T νde , the left-hand side must also be dependent only on
S/T νde . This can be achieved by assuming −νdeκ + deκ = 1,
as one can easily see by using Eq. (16):

Starting from the left-hand side

exp(−T 1�(S/T de ))

∝ exp(−T 1(S/T de )κ )

= exp(−T −νdeκ+deκ (S/T de )κ )

= exp(−(S/T νde )κ ).

From this we can conclude

κ = 1

de(1 − ν)
, (18)

which simplifies to the case of the standard random walk above
the critical dimension of the given walk type [25],

κg = 2

de
.

To compare this crude estimate with the results of our
simulations, we do a pointwise extrapolation of the empirical
rate functions for fixed walk lengths T as done before in
Refs. [23–25]. For the pointwise extrapolation, we use mea-
surements �T for multiple values of the walk length T at fixed
values of S/Smax. Since our data are discrete due to binning,
the values of �T are obtained by cubic spline interpolation.
With these data points, which can be thought of as vertical
slices through the plots of Fig. 8, we extrapolate the T → ∞
case with a fit to a power law with offset

� = aT b + �∞. (19)

The extrapolated values are marked with black dots in Fig. 8.
Since finite-size effects have a major impact on the tails due to
the lattice structure, we expect that our estimate is only valid for
the intermediate right tail of our simulational data. To estimate
sensible uncertainties, we fit different ranges of our data and
give the center of the range of the obtained κ as our estimate
with an error including the extremes of the obtained κ . The
black lines in Fig. 8 are our expected values, which are in all
examples compatible with some range of our extrapolated data.
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FIG. 8. Selection of asymptotic rate functions extrapolated from our data and our expected exponent κ of the rate function �.

All exponents κ we calculated, together with our expecta-
tions, are listed in Table II. A more detailed discussion of the
examples shown in Fig. 8 follows.

In Fig. 8(a) the LRW is shown, which is equivalent to
Brownian motion in the large-T limit for which Refs. [23]
and [25] showed the rate function to behave like a power
law with exponent κ = 1 for the area in d = 2. Using the
above-mentioned procedure we obtain κ = 0.99(2), which is
in perfect agreement with the expectation κ = 1.

Figure 8(b) shows the same for the SKSAW. The obtained
asymptotic rate function’s exponent κ = 1.28(12) is compati-
ble with our expectation, though the stronger finite-size effects
lead to larger uncertainties of our estimate.

Figure 8(c) shows the same but for the volume of the SAW
in d = 3 dimensions. The finite-size effects are apparently

TABLE II. Comparison of expected and measured rate function
exponent κ . The value is the center of multiple fit ranges and the error
is chosen such that the largest and the smallest result is enclosed.

V ∂V

Eq. (18) κ Eq. (18) κ

LRW 1 0.99(2) 2
SKSAW 7

6 1.28(12) 7
3

SAW 2 2.2(4) 4 4.11(14)
SAW d = 3 0.809... 0.92(11) 1.214...

LERW 5
2 2.57(24) 5 4.82(19)

LERW d = 3 0.867... 0.89(9) 1.299...

stronger for the volume in d = 3, as the slope of the right-tail
rate function gets less steep with increasing system size.

Figure 8(d) shows the same for the perimeter of a d = 2
dimensional LERW. In contrast to the area and volume, the
far-right tail of the perimeter seems to bend down instead of
up, albeit slightly. Though in the intermediate right tail, the
rate function seems to behave as expected.

In general, our data supports the convergence to a lim-
iting rate function, which, mathematically speaking, means
that the large-deviation principle holds. This means that
the distributions are somehow well behaved and might be
accessible to analytical calculations, alhough the estimate for
what the rate function � actually is can possibly be improved.
However, since our estimate for κ is always compatible with
our measurements it appears plausible that also for interacting
walks the distribution of the convex hulls is governed by the
scaling behavior of the end-to-end distance, as given by the
exponents ν.

IV. CONCLUSIONS

We numerically studied the area and perimeter of the convex
hulls of different types of self-avoiding random walks in the
plane and to a lesser degree the volume of their convex hulls
in d = 3 dimensional space. By applying sophisticated large-
deviation algorithms, we calculated the full distributions, down
to extremely small probabilities like 10−400. We also obtained
corresponding rate functions of these observables. Our data
support a convergence of the rate functions, which means
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the large-deviation principle seems to hold. We observed a
generalized scaling behavior, which was before established
for standard random walks. Thus, although the self-avoiding
types of walk exhibit a more complicated behavior as compared
to standard random lattice walks, and although the limiting
scaled distributions of their convex hull’s volume and surface
look quite different for the various walk cases, in the end the
convex hull behavior seems to be still governed by the single
end-to-end distance scaling exponent ν.

We also observed, rather expectedly, that the two ob-
servables area and perimeter are highly correlated for small
values. For large but not too large values of the perime-
ter, many different values of the area are possible but are
statistically dominated by rather small values of the area.
Extremely large values of the perimeter are only feasible with
shrinking area.

Finally, we gave estimates for the large-T asymptotic mean
values of the mentioned observables. These might be of interest
for attempts to calculate these values analytically.

For future studies it could be interesting to look closer into
the correlations between different observables that we briefly
noted. For a more thorough study, it would be useful to obtain
full two-dimensional histograms.
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