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Asymptotic behavior of the length of the longest increasing subsequences of random walks
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We numerically estimate the leading asymptotic behavior of the length Ln of the longest increasing
subsequence of random walks with step increments following Student’s t-distribution with parameters in the
range 1/2 � ν � 5. We find that the expected value E(Ln) ∼ nθ ln n, with θ decreasing from θ (ν = 1/2) ≈ 0.70
to θ (ν � 5/2) ≈ 0.50. For random walks with a distribution of step increments of finite variance (ν > 2),
this confirms previous observation of E(Ln) ∼ √

n ln n to leading order. We note that this asymptotic behavior
(including the subleading term) resembles that of the largest part of random integer partitions under the uniform
measure and that, curiously, both random variables seem to follow Gumbel statistics. We also provide more
refined estimates for the asymptotic behavior of E(Ln) for random walks with step increments of finite variance.
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I. INTRODUCTION

The longest increasing subsequence (LIS) problem is to
find an increasing subsequence of maximum length of a given
finite sequence of n elements taken from a partially ordered
set. Let Xn = (X1, . . . , Xn) be such a sequence, say, of real
numbers. The longest (weakly) increasing subsequence of
Xn is the longest subsequence Xi1 � Xi2 � · · · � XiL of Xn

such that 1 � i1 < i2 < · · · < iL � n, with L the length of
the LIS. There may be more than one “longest” increasing
subsequence for a given Xn, with different elements but of the
same maximum length. Algorithmically, it takes O(n) space
and O(n log log n) time to find one LIS of a given sequence of
n elements [1].

Despite a superficial similitude, the LIS and the sequence
of records of a time series, a rich traditional subject fre-
quently studied in statistical mechanics, are unrelated and
should not be confused. The LIS is the maximum-length
increasing subsequence, while the sequence of records is
the subsequence of increasing maxima. For example, in the
sequence (2,1,6,4,3,5) the sequence of records is (2,6), while
the LISs are (1,3,5), (1,4,5), (2,3,5), and (2,4,5). Note also
that the LIS of a time series is a much more intricate quantity
than its set of records, since it depends on the entire series,
not just on past events; it is a global property of the series.
Algorithmically, the sequence of records can be obtained
by one linear sweep through the sequence and can also be
determined online (on the go) as the series progress, while
more elaborate approaches are necessary to determine the
LIS [1]. As far as we currently understand, results on records
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are of no avail in the treatment of the LIS problem. The
reader interested in the modern theory of records should
consult [2,3]. Examples of the application of the LIS can be
found in computer science, where the sortdedness of a data
stream or list of items can be used, e.g., to decide whether
the data have to be sorted again [4], and also in the design of
privacy preserving algorithms for publicly shared information
through sequential data streams [5].

Initially, the LIS problem was considered in the mathemat-
ical literature for random permutations. The problem seems
to have been first considered by Ulam in the early 1960s [6].
The resolution of the LIS problem for random permutations
culminated with the exact characterization of Ln as a random
variable distributed like Ln ∼ 2

√
n + 6

√
nχ with P (χ � s) =

F2(s), the Tracy-Widom distribution for the fluctuations of
the largest eigenvalue of a Gaussian unitary random ma-
trix ensemble about its expected value [7,8]. Comprehensive
expositions on the LIS problem for random permutations
appear in [9,10].

Recently, another version of the LIS problem was
posed [11,12]: What is the behavior of the LIS of a random
walk? Let Xn = (X1, . . . , Xn) be the sequence of terms of a
random walk given by

X0 = 0, Xt = Xt−1 + ξt , t = 1, . . . , n, (1)

with the ξt , t = 1, . . . , n, independent random variables iden-
tically distributed according to some zero-mean symmetric
probability distribution φ(ξ ). The sequence Xn constitutes a
time series of correlated random variables: if the expectation
E(ξ 2) �= 0, then E(Xt Xs) �= 0. In [11], the authors showed that
when φ(ξ ) has finite positive variance, then for all ε > 0 and
large enough n the length Ln of the LIS of Xn observes

c
√

n � E(Ln) � n1/2+ε (2)
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FIG. 1. Student’s t random walks of 300 steps each with parameters (a) ν = 1 and (b) ν = 4 together with one of their LISs (small circles).
Note the different vertical scales.

for some positive constant c. The upper bound in Eq. (2) does
not rule out a logarithmic term and can actually be read as

E(Ln) �
√

n(ln n)a (3)

for some a � 0. In [12] the authors further proved that the
expected length of the LIS of a particular random walk
with step lengths of ultraheavy distribution without any finite
(integer or fractional) moment scales with the length of the
walk as

nβ0−o(1) � E(Ln) � nβ1+o(1), (4)

with nonsharp β0 � 0.690 and β1 � 0.815. Besides the
bounds (2)–(4), little is known rigorously about the LIS of
random walks.

Figure 1 displays two random walks of 300 steps dis-
tributed according to a Student t-distribution (see Sec. II), one
with parameter ν = 1 (the same as the Cauchy distribution)
and the other with parameter ν = 4, together with one of their
LIS each.

In order to improve our knowledge about the LIS of
random walks, we ran Monte Carlo simulations [13,14] to
estimate the scaling of Ln for several different distributions
of step lengths [15,16]. The simulations showed that

E(Ln) ∼ nθ (5)

with a nonuniversal scaling exponent 0.60 � θ � 0.69 for the
heavy-tailed distributions of step lengths examined, with θ

increasing as the distribution of step lengths becomes more
heavy tailed. For distributions of finite variance, one of us
conjectured [15] that the asymptotic behavior of E(Ln) in
these cases is given by

E(Ln) ∼ 1

e

√
n ln n + 1

2

√
n (6)

plus lower-order terms, although the constants are presumed
based on least-squares adjustments. Moreover, it has been
found that the empirical distribution of Ln seems to be of the
form

f (Ln) = 1

E(Ln)
g

(
Ln

E(Ln)

)
, (7)

with E(Ln) given by Eq. (5) or (6) depending on whether φ(ξ )
has a finite second moment or not. Accordingly, when the

step lengths are of finite variance g(z) should be universal.
Plots of g(z) for different distributions of step lengths appear
in Ref. [15] (see also Fig. 4). The form (7) was further
tested in Ref. [16], which probed the distribution of Ln into
regions of very small probabilities for random walks with
uniform increments ξ ∼ U (−1, 1). The authors found very
good agreement between Eqs. (6) and (7) and their data. They
also estimated that the large-deviation rate function 	(L)
associated with the distribution of Ln by

f (Ln) � exp[−n	(Ln)] (8)

behaves asymptotically, in the limit of large n → ∞, like
	(L) ∼ L−1.6 in the left tail and 	(L) ∼ L2.9 in the right
tail. Despite this characterization, the distribution g(z) remains
unknown. It is tempting to conjecture that the actual exponents
in 	(L) are, respectively, L−3/2 and L3, in which case they
would be the same as those of the large-deviation rate function
of the Tracy-Widom F2 distribution with the sides (left ↔
right) and signs flipped [17]. Note, however, that unlike in
Eq. (8), the large-deviation rate function for the Tracy-Widom
distribution in the right tail is defined by a relationship of the
form exp[−√

n	(L)], i.e., with an unusual
√

n scaling.
Interestingly, while the LIS of random permutations played

a fundamental role in the development of a wealth of mathe-
matical physics in the past few decades, the LIS of random
walks had not receive any attention until very recently. Since
the LIS finds applications in the analysis of data streams and
time series, it is necessary to understand its fundamental be-
havior. In this paper we provide an updated account on the LIS
problem for random walks. While in previous studies of the
problem only specific distributions φ(ξ ) of step increments
were considered, in Sec. II we employ a parametrized distribu-
tion, namely, Student’s t-distribution, considerably enlarging
the class of random walks considered. This approach allows us
to investigate the dependence of the scaling exponent θ in (5)
with the heavy tail index of φ(ξ ). In Sec. III we further verify
the proposed scaling form (6) and (7) with independent data,
this time taking the full distribution of the data into account.
We also remark on the resemblance between the statistics
of the LIS problem for random walks of finite variance and
the random partition problem under the uniform measure.
Section IV summarizes the paper and provides perspectives
for further study.
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II. THE LIS OF HEAVY-TAILED RANDOM WALKS

We investigate the behavior of the scaling exponent ap-
pearing in the relation Ln ∼ nθ for random walks with a
heavy-tail distribution of step increments as a function of their
characteristic index α, defined by

φα (|ξ | � 1) ∼ |ξ |−1−α. (9)

We want to check whether there exists a well defined re-
lationship between θ and α. In order to access a range of
values of α � 2 [such that E(ξ 2) = ∞], we employ Student’s
t-distribution [18]

φν (ξ ) = �[ 1
2 (ν + 1)]√
νπ�( 1

2ν)

(
1 + ξ 2

ν

)−(ν+1)/2

, (10)

where �(z) is the usual gamma function and ν is a param-
eter. This distribution appears in inference problems about
unknown parameters (mean or variance or both) of a normal
population. In statistical applications ν � 1 is a natural num-
ber, but for modeling purposes ν can be taken a real positive
number. When ν < ∞, Student’s t-distribution displays a
heavy tail φν (|ξ | � 1) ∼ |ξ |−1−ν , with infinite variance if
ν � 2 and finite variance ν/(ν − 2) for ν > 2. We see that
ν plays the role of the tail index α in Eq. (9). Student’s
t-distribution becomes the Gaussian distribution in the limit
ν → ∞.

For each parameter ν and walk length n, we generate 104

realizations of Xn, compute their Ln, and estimate the empiri-
cal average 〈Ln〉 and variance 〈L2

n〉 − 〈Ln〉2. In our simulations
1/2 � ν � 5 and 104 � n � 107 (and up to 2 × 108 for some
values around ν = 2). Student’s t random deviates can be
efficiently and reliably generated by the polar method [19].
Whenever E(ξ 2) is finite, i.e., ν > 2, we use normalized
random variables ξ/

√
E(ξ 2) for the step increments. To em-

pirically obtain θ as a function of ν for all values of ν, and led
by the previous results embodied in Eqs. (5) and (6), we fitted
the data of the empirical averages 〈Ln〉 for all values of ν to

〈Ln〉 ∼ nθ (1 + c ln n) (11a)

and

〈L2
n〉 − 〈Ln〉2 ∼ nγ (1 + d ln n) (11b)

over the range of sizes investigated. Figure 2 displays log-log
plots of 〈Ln〉 and 〈L2

n〉 − 〈Ln〉2 for ν = 2/3 for illustration. The
least-squares-fit estimates obtained for θ and γ are shown in
Table I. For ν < 3/2, the size of the logarithmic correction
is very small; thus we set it to zero to obtain the final value
of θ (which reduced the error bars for θ here). Note that
for ν � 2 all values of θ obtained are roughly in the range
[0.49,0.51], i.e., θ = 1/2 with a logarithmic correction seems
to hold, confirming previous predictions [15,16]. In Sec. III B,
however, we revisit the estimation of the constants appearing
in (6). For ν � 3/2, we obtained γ � 2θ to a very good
precision, in agreement with the picture provided by Fig. 2,
suggesting that the probability density function (PDF) of
Ln indeed follows the form (7), since then the kth moment
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FIG. 2. Log-log plot of (a) the empirical mean and (b) the
empirical variance of Ln for Student’s t random walk with parameter
ν = 2/3 together with the least-squares fits (dashed lines). For this
value of ν, the expression (11a) with c = 0 yields the best fit. The fact
that the curves have virtually the same slope in the different vertical
scales on the graphs suggests that γ � 2θ . Each point was obtained
from an average over 104 sample random walks.

of Ln becomes

E
(
Lk

n

) =
∫

Lk
n f (Ln)dLn = E(Ln)k

∫
zk

ng(zn)dzn = cn,kE(Ln)k,

(12)

with zn = Ln/E(Ln) and cn,k the kth moment of the distribu-
tion g(zn) = E(Ln) f (E(Ln)zn). We see that, with f (Ln) like
in Eq. (7), all moments E(Lk

n ) ∝ E(Ln)k , as our data for
k = 1 and 2 do for small enough values of ν. Note that, as
a consequence,

Var(Ln) = E
(
L2

n

) − E(Ln)2 = (
cn,2 − c2

n,1

)
E(Ln)2, (13)

and the random variable Ln cannot possibly be self-averaging
unless (cn,2 − c2

n,1)
n−→ 0, i.e., unless g(zn) becomes increas-

ingly more concentrated with n,

g(zn)
n−→ δ(z − c1). (14)

Our data indicate, however, that g(zn) remains broad irrespec-
tive of how large n gets.

Figure 3 displays a log-log plot of θ against ν. The plot
does not suggest any clear functional relationship between
θ and ν; we were hoping for something like θ ∼ (νc − ν)z

in the interval ν � 2. Otherwise, θ saturates at θ � 0.5 for

TABLE I. Exponents θ and γ fitted according to (11a) and (11b)
for selected values of tail index ν. The ratio γ /θ � 2 suggests
form (7) [see also Eq. (12)] for the PDF of Ln. The numbers in
parentheses indicate the uncertainty in the last digit(s) of the data.

ν θ γ γ /θ

1/2 0.7050(6) 1.419(2) 2.01
1 0.6850(6) 1.372(3) 2.00
3/2 0.588(7) 1.355(13) 2.30
2 0.516(3) 1.294(7) 2.51
5/2 0.500(4) 1.259(9) 2.52
3 0.496(3) 1.246(8) 2.51
7/2 0.501(5) 1.260(16) 2.51
4 0.504(4) 1.259(10) 2.40
5 0.497(3) 1.257(10) 2.52
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FIG. 3. Log-log plot of the scaling exponent θ against the tail
index ν. The dashed vertical lines delimit the intervals in which φν (ξ )
[Eq. (10)] does not have finite integer moments (ν � 1), has only
finite mean (1 < ν � 2), and has finite mean and variance (ν > 2).
The dashed horizontal line marks the θ = 1/2 line. For some data
points the error bars are smaller than the symbols shown.

distributions of step lengths of finite variance (ν > 2), with
a transient behavior in the interval 2 < ν � 5/2 that we
attribute to the finite length of the random walks (n � 107

steps).
Figure 4 displays data collapses for our LIS data for some

selected ν employing expression (5) or (6), depending on
whether ν < 2 or ν � 2, respectively. The curve resulting
from the data collapse corresponds to the empirical distri-
bution g(z) in Eq. (7). We see very good data collapses, all
virtually with the same form for g(zn). We also see that it is
definitely not the case that g(zn)

n−→ δ(z) [cf. Eqs. (12)–(14)].

III. THE LIS OF RANDOM WALKS OF FINITE VARIANCE

A. A wishful (but unlikely) connection with integer partitions

Recall that a partition of a natural number n is a se-
quence of integers λ1 � · · · � λk > 0 such that λ1 + · · · +
λk = n. For example, (5,4,3) and (4,4,2,1,1) are two parti-
tions of n = 12. No closed-form expression for the num-
ber p(n) of partitions of n is known. Asymptotically, for
n → ∞ we have the Hardy-Ramanujan formula p(n) ∼
exp(π

√
2n/3)/4

√
3n [20].

As is well known, integer partitions play an important
role in the solution of the LIS problem for random permuta-
tions [8–10]. In this case, the partitions carry the Plancherel
measure given by P (λ) = (dim λ)2/n!, where dim λ is the
dimension of the irreducible representation of the symmet-
ric group Sn indexed by λ or, equivalently, the number
of Young tableaux of shape λ. The correspondence be-
tween permutations and integer partitions (via the Robinson-
Schensted-Knuth correspondence between permutations and
Young tableaux) then allows one to identify the largest part
of the partition λ with the length of the LIS of the original
permutation.

FIG. 4. Data collapses for some LIS data according to
expressions (5) and (6). The upper panels (a) and (b) display data
for the LIS of random walks with step lengths with both infinite
mean and variance (ν � 1), the middle panels (c) and (d) display
data when the step increments have finite mean but infinite variance
(1 < ν � 2), and the bottom panels (e) and (f) display data ob-
tained from random walks with step increments with both mean and
variance finite (ν > 2).

Clearly, other probability measures for random integer
partitions have also been considered. Of particular interest to
us is the uniform measure given by P (λ) = 1/p(n). This is so
because the expected size of the largest part λ1 of a partition
of a large integer n drawn from the set of all partitions of n
uniformly at random is given asymptotically by [21–26]

E(λ1) =
√

n

4ζ (2)

[
ln n + 2γE − ln ζ (2)

] + O(ln n), (15)

where ζ (2) = π2/6 and γE = 0.577 215 . . . is Euler’s con-
stant. Equation (15) has, to leading and subleading order, the
same functional form as the conjectured expression (6) for the
asymptotic behavior of the length of the LIS of random walks
with step lengths of finite variance. Moreover, the constant
1/

√
4ζ (2) = 0.389 848 . . . accompanying the leading term of

Eq. (15) is close to the conjectured 1/e = 0.367 879 . . . in (6).
In the random partition model, however, the largest part λ1

fluctuates, asymptotically for large n, like a Gumbel random
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FIG. 5. Histogram of Ln obtained from 104 Gaussian random
walks of 108 steps each, together with the standard Gumbel PDF
(solid line). The LIS data are centered and normalized by the adjusted
parameters μ̂ and β̂, respectively [see Eqs. (17)–(19)].

variable with distribution

P (λ1 � λ) = FG

(
λ − √

n/4ζ (2) ln [n/4ζ (2)]

2
√

n/4ζ (2)

)
, (16)

where FG(z) = exp[− exp(−z)] [22–25]. We can thus check
whether Eq. (15) makes sense in the context of the LIS prob-
lem for random walks beyond mere coincidence by checking
whether our LIS data follow a Gumbel distribution.

The mean and variance of a Gumbel random variable with
the PDF

fG(x; μ, β ) = 1

β
exp

[
−

(
x − μ

β

)
− exp

(
−x − μ

β

)]

(17)

are given by

E(x) = μ + γEβ, Var(x) = π2

6
β2. (18)

If we substitute the sample mean 〈Ln〉 = 69 946 for E(x) and
the sample variance 〈L2

n〉 − 〈Ln〉2 � 8.399 × 108 for Var(x) of
a LIS data set obtained from 104 Gaussian random walks of
n = 108 steps each, we obtain the following simple estimation
for the parameters in (17),

μ̂ � 56 903, β̂ � 22 597. (19)

We do not care about the uncertainties in μ̂ or β̂ be-
cause they are relatively small and because the estimation
procedure itself (the method of moments) is only approxi-
mate. While μ̂ (as well as 〈Ln〉) is not very far from the
respective factor in Eq. (16) with n = 108, to wit, μ =√

n/4ζ (2) ln[n/4ζ (2)] = 64 468, the value of β̂ differs signif-
icantly from β = 2

√
n/4ζ (2) = 7797. Figure 5 displays the

histogram of the LIS data together with a plot of fG(z) =
F ′

G(z) = exp[−z − exp(−z)]. The fit looks good, but not ex-
cellent. In fact, the Gumbel distribution has a skewness of
12

√
6ζ (3)/π3 = 1.139 . . ., while the data distribution has

skewness �0.976 (irrespective of linear scaling). Whether this
discrepancy is a finite-size effect is not clear at this moment.
It should be remarked, however, that LIS data obtained from
a uniform U (−1, 1) distribution of step increments with other

values of walk length n provide the same overall picture as in
Fig. 5 and seem to be nearly independent of n.

We leave the quantification of the “Gumbel hypothesis” to
a future study employing more sophisticated density estima-
tion techniques and hypothesis testing to tame uncontrolled
wishful thinking [27]. In Sec. III B, however, we will discover
that Eq. (15) cannot be easily discarded as a possible scaling
form for the length of the LIS of random walks with step
lengths of finite variance.

B. Constraining the range of the parameters
in the asymptotic formula for E(Ln)

The constants 1/e and 1/2 appearing in the conjectured
asymptotic formula (6) for the E(Ln) of random walks with
distribution of step increments of finite variance were origi-
nally guessed in Ref. [15] based on linear least-squares fits to
the data. Equation (15), with the same functional form, dis-
plays, respectively, the constants 1/

√
4ζ (2) = 0.389 848 . . .

and [2γE − ln ζ (2)]/
√

4ζ (2) = 0.256 025 . . .. The proximity
between the two sets of constants led us to reassess the
numerical values of the constants appearing in (6) by a more
refined approach.

Assuming that Eq. (7) holds for the distribution of Ln and
that E(Ln) behaves asymptotically like [cf. Eq. (6) or (11a)]

E(Ln) ∼ a
√

n ln n + b
√

n, (20)

we can use the entire measured distributions to estimate the
parameters a and b and give confidence intervals on their
possible values. For a given pair (a, b) we scale the data
points according to Eq. (20) and estimate the quality S(c)

a,b
[superscript (c) for collapse, discussed below] of the resulting
data collapse by a method first introduced in [28] and refined
in [29] in the context of the finite-size scaling analysis of
phase transitions. The method works by estimating the best
master curve on which the data points for different sizes n
should collapse. The quality S(c)

a,b is defined as the mean-square
distance of the data points to the master curve in units of the
standard error, similar to a χ2 test. If the data points are on
average one standard error away from the estimated master
curve, the data collapse will have a quality of S(c)

a,b = 1. Values

S(c)
a,b � 1 indicate that the standard errors are overestimated;

values S(c)
a,b � 1 indicate that the data points do not collapse

within error bars, i.e., that the quality of the data collapse is
bad. A data collapse of bad quality might be due to, besides
the inevitable errors in the estimation of the master curve, also
finite-size effects in the data and corrections to the functional
form (20) itself.

In our case, care should be exercised in the application
of the method because the scaling function g(z) [see Eq. (7)]
is insensitive to the multiplication of Ln, and thus E(Ln),
by a nonzero factor, i.e., to any rescaling (a, b) → (ra, rb)
by some (real) r �= 0. This leaves the determination of the
optimal (a, b) ill-defined. To fix this we compare the average
value of each data set with the values predicted by Eq. (20)
for every pair (a, b) tested. We then apply the same method
as before to compute the quality figure S(m)

a,b [superscript
(m) for mean] using Eq. (20) as the master curve with an
added generous uncertainty of ±0.05 × E(Ln) to account for
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FIG. 6. Quality landscape Sa,b obtained for random walks of
n = 216, 217, 218, and 219 uniformly, U (−1, 1) distributed steps;
106 random walks were generated for each n. The square indi-
cates the point (1/e, 1/2) proposed in [15], the circle indicates the
point (0.389 848 . . . , 0.256 025 . . .) corresponding to Eq. (15), and
the plus indicates the point (0.36, 0.36) at which Sa,b attains its
minimum.

finite-size effects and possible lower-order terms. Note that
the minimum of S(m)

a,b corresponds to a standard least-squares
fit.

The above-mentioned analyses were performed on data
obtained from random walks of n = 216, 217, 218, and 219 steps
distributed according to a uniform U (−1, 1) distribution; for
each value of n, 106 sample random walks (and thus 106 data
points Ln) are generated. Because data collapse is a matter of
the form of a curve, we perform the collapse on ln f (Ln). This
means that instead of the absolute standard errors σ of each
data point we use the relative σ/ f (Ln) instead.

Figure 6 displays the contour plot of the composite qual-
ity factor Sa,b = 1

2 (S(c)
a,b + S(m)

a,b ) for our data, which are col-
lected by a scan through the (a, b) space in discrete steps
of �a = 0.003 and �b = 0.01 of the aforementioned proce-
dure. The best quality S(min)

a,b ≈ 0.7 was achieved for (a, b) =
(0.36, 0.36). The equiquality lines at S(min)

a,b + 1 and S(min)
a,b + 2

can be roughly understood as 1σ and 2σ confidence intervals
around the best quality S(min)

a,b [28,29]. Note that the precise
shape of the confidence intervals depends on the weight-
ing of the terms in the composite quality; for instance, a
larger weight on S(m)

a,b , say, Ŝa,b = 1
4 (S(c)

a,b + 3S(m)
a,b ), leads to

a further elongation of the equiquality loci. Figure 7 shows
the data collapse as well as the least-squares fit which, in
combination, yield the best quality. A further data collapse
using high-precision data from Ref. [16] in the far tails of
the distribution shows a different picture, with S(min)

a,b = 81
at (a, b) = (0.33, 0.68). This data collapse, although still
including the pair (1/e, 1/2) within the second interval, is
clearly of bad quality (S(min)

a,b � 1), probably because of strong
finite-size effects, since we only have data in the far tails of
the distributions for small walk lengths n � 4096. This data
collapse is therefore not shown.

We see from Fig. 6 that both pairs (a, b) = (1/e, 1/2),
which was proposed in [15] based on least-squares fits of
mean values 〈Ln〉 for the LIS of Gaussian random walks,
and (a, b) = (0.389 848 . . . , 0.256 025 . . .) of Eq. (15) lie
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FIG. 7. Data collapse of the distributions with the optimal pair
(a, b) = (0.36, 0.36) that minimizes Sa,b. The inset shows the empir-
ical averages 〈Ln〉 and their prediction according to Eq. (20) with the
optimal constants (a, b) = (0.36, 0.36).

within the second confidence interval suggested by our
method. Since the data sources are independent and even
originate from different distributions of step increments, we
see this as an argument in favor of the proposed scaling
form (20).

IV. SUMMARY AND CONCLUSIONS

We have extended previous studies on the length Ln of the
LIS of heavy-tailed random walks by considering Student’s
t-distributions with several different values of the parameter ν.
We found that Ln scales like E(Ln) ∼ nθ with a nonuniversal
θ when φ(ξ ) has infinite variance, but could not find a clear
relationship θ = θ (ν) between these quantities besides the
decreasing behavior θ ′(ν) < 0. We were expecting to find
something like θ (ν) ∼ (ν − νc)z for some νc, possibly equal
to 1 or 2, and some “critical exponent” z. Unfortunately,
though, as Fig. 3 indicates (note the log-log scale), such a
relationship would entail a varying exponent z. Whether this
is a finite-n artifact we cannot tell. To seriously consider the
hypothesis of a continuous phase transition for the behavior
of the LIS between the ν > νc and ν < νc regions with θ

as the order parameter one would probably have to simulate
much longer random walks and possibly also larger sample
sizes. Since we do not observe any strong change in the values
of θ when increasing the sequence n by a factor of 10, the
walks probably would have to be by a factor of many decades
longer, much beyond the available computational resources.

When φ(ξ ) is of finite variance (ν > 2), we recover the
asymptotic behavior given by (6), but with newly estimated
constants. Our best current estimates for the constants ap-
pearing in expression (20), based on a sophisticated combined
consideration of the behavior of the mean and of the scaling
of the full distribution, are a = 0.36(3) and b = 0.36(30).

We could not obtain data for ν < 1/2. The simulation of
very-heavy-tailed random walks is complicated by the fact
that one needs to add numbers of widely different orders
of magnitude while keeping their full significance. This can
be done with numerical libraries that implement arbitrary
precision arithmetic, but the efficiency of the simulations
suffers enormously. It would be desirable to compute the LIS
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of heavy-tailed random walks in the ν → 0 limit to check how
θ scales with ν in this limit and how it compares with the
bounds in (4).

Our results about the scaling behavior of the mean LIS
length, although useful on their own, can find applications,
for instance, in the descriptive analysis of time series: If the
LIS length grows stronger than expected, this is an indi-
cation that hidden trends or correlations are present in the
data.

While the Plancherel distribution of the largest part of
an integer partition coincides with the distribution of the
length of the LIS of a uniformly distributed random per-
mutation [8–10], the similarity between (6) and Eq. (15)
does not imply any obvious relationship between the LIS
of random walks and random integer partitions under the
uniform measure. Our best estimated constants a and b for
expression (20), however, cannot rule out Eq. (15) as a good
candidate scaling form for the length of the LIS of random
walks with step lengths of finite variance, and whether the
LIS of these random walks follows a Gumbel distribution is
open to debate. In a further study we intend to apply more
refined density estimation techniques in the selection of an

empirical model for the data; knowledge of the tail behavior,
as provided by [16], is a valuable piece of information in this
regard.

The elucidation of a possible combinatorial structure be-
hind the LIS of random walks remains a tantalizing issue.
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