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We study the stochastic block model, which is often used to model community structures and study
community-detection algorithms. We consider the case of two blocks in regard to its largest connected com-
ponent and largest biconnected component, respectively. We are especially interested in the distributions of their
sizes including the tails down to probabilities smaller than 10−800. For this purpose we use sophisticated Markov
chain Monte Carlo simulations to sample graphs from the stochastic block model ensemble. We use these data
to study the large-deviation rate function and conjecture that the large-deviation principle holds. Further we
compare the distribution to the well-known Erdős-Rényi ensemble, where we notice subtle differences at and
above the percolation threshold.
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I. INTRODUCTION

The stochastic block model (SBM) [1] is a generative
model for networks with community structure. For this pur-
pose, each node is assigned to one of B blocks. Similar to the
Erdős-Rényi (ER) model [2], edges between pairs of nodes
appear with some probability. For the SBM, these probabili-
ties can depend on the blocks each node belongs to. Thus, the
probabilities for edges between or within the blocks can be en-
coded in the B × B block matrix. On the one hand this makes
the model very versatile with an arbitrary number of blocks
and arbitrary probabilities between the blocks; on the other
hand it still stays simple in the sense that it is an ensemble of
random graphs without any further correlations between the
edges like the ER graph ensemble or configuration model [3].
Indeed, in the case of B = 1 it simplifies to an ER ensemble.

In statistical physics there is a persistent interest in the
stochastic block model as a tool for community detection,
i.e., given a network, what is the block matrix, and to which
blocks do the nodes belong most probably if this realization
was drawn from an ensemble of stochastic block models. This
problem shows interesting behavior as it exhibits two phases:
one in which a reconstruction of the parameters is possible—
studying different approaches how to do that is another active
field of studies [4–9]—and another phase, where the recon-
struction is infeasible [10–12]. In general, the determination
of community structures is algorithmically challenging. This
motivated our study, because we are interested in whether the
detectability is related to the simpler properties of the system,
like the size of the largest cluster. Here, in anticipation of our
results, we find that we can indeed recognize whether there is
some kind of block structure present for a small parameter
range, especially when also considering the far tails of its
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distribution. But this distinguishability seems to be related to
the percolation threshold instead of the detectability threshold.

Usually, systems modeled by networks have some kind
of functionality, e.g., communication networks enable infor-
mation exchange between nodes, power grids enable power
transmission between producers and consumers, and social
networks exchange, for example, opinions over the edges. As
a very simple but general indicator of the functionality for
sparse networks, the size S of the largest connected compo-
nent is useful and the most simple global network property
of any ensemble. Hence, we study here the distribution of
S for the SBM. The average behavior of S determines the
percolation transition. As we will show below, the percolation
transition of the SBM is related to the ER simply by using
an effective (average) connectivity. This could indicate that
the distribution of S is the same for SBM and the ER with this
effective connectivity. But this is not the case, as we will show
below, in the percolating region.

Furthermore, since networks consist of many nodes, which
often symbolize entities that can fail or vanish, the robustness
against this kind of events is relevant. A common idea [13–17]
to measure robustness is to remove one or several nodes,
either randomly or according to “attack” rules, and measure
its impact on the functionality. Here, since we are measuring
the functionality in terms of the size of the largest connected
component, we also measure the robustness in terms of the
size of the largest biconnected component, i.e., the subgraph
that will stay connected if any node was removed. Note that
this observable is not an uncommon choice to determine ro-
bustness [18].

We scrutinize these properties in very great detail, i.e., not
only do we look at their mean size, but we also obtain their
probability distributions over practically the whole support,
especially including very rare events with a probability of
less than p = 10−800. This is, to our knowledge, the first
time the tails of the probability density function of these
properties have been studied for any stochastic block model.
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In large-deviation theory [19], many probability distributions
have a special shape which allows one to remove the leading
finite-size influence and describe the distributions by the so-
called rate function. As we will show below, here we find a
comparatively fast convergence of the empirical rate functions
calculated from the finite-size distributions. This enables us
to observe the complete large-deviation-rate function almost
directly and conjecture that the large-deviation principle [19]
holds for this distribution.

The motivation to study these properties in such great de-
tail is mainly fundamental interest in the behavior of these
ensembles. The deep tails, which we explore here too, should
lead to a deeper understanding of fringe cases. Also, we hope
that our numerical high-precision studies motivate analytical
work in this direction.

The latter seems possible because the behavior of the
studied observables is known analytically for the related ER
ensemble [20]. Corresponding large-deviation results were
also obtained using simulational techniques [21,22]. Since the
ER is a special case of the stochastic block model and is in
general a good null model to compare other graph ensembles
to, we compare and contrast it to the SBM. We even show
results for the ER ensemble for larger sizes than studied in
Refs. [21,22].

As mentioned in the last paragraph, we previously stud-
ied similar subjects. Starting with Ref. [21], motivated by
an analytical expression for the rate function for the size
of the largest connected component for ER [20], one of us
compared this expression with measurements obtained from
simulations and found a rather fast convergence of the mea-
surements to the rate function valid in the asymptotic limit,
as even estimates obtained from graphs with a few hundred
nodes showed already a very good convergence. Also in the
same publication a similar analysis is performed for regular
lattices instead of ER. Later, in Ref. [23] the distribution of the
diameter for ER was obtained similarly, and in Refs. [22,24]
we extended these results to the distribution of the size of the
2-core and the biconnected component. In the latter we also
studied another graph ensemble, the famous Barabási-Albert
ensemble of scale–free graphs [25]. Here we extend this line
of work further by examining the connected component and
biconnected component on yet another ensemble of random
graphs: a simple case of the SBM.

This case study of a few parameter values of a simple SBM
can surely not be generalized to all SBMs. So the results we
will show are primarily applicable to the parameters studied.
However, often the results give insight into the mechanism
leading to a specific behavior, in which case we will make
educated guesses for which more general cases we expect to
observe similar phenomena.

II. MODELS AND METHODS

A graph is a tuple G = (V, E ) of a set of nodes V and a
set of edges E . The number of nodes |V | = N is called the
size of the graph. Here we will scrutinize only undirected,
simple graphs, i.e., E ⊂ V (2) \ {{u, u}|u ∈ V }. For each node
the number of incident edges is its degree. Since graphs
are used to model relations between objects, one of the
most fundamental properties of graphs is their connectedness.

Fundamentally, only nodes i, j which are connected via a
path, i.e., a sequence of edges {{i, u1}, {u1, u2}, . . . , {um, j}},
can interact at all with each other. The maximal subsets whose
members are connected are called connected components,
their size is the number of elements. It is therefore of interest
if a given graph is connected or what the size of its largest
connected component is.

The functionality of a network is for many applications
directly dependent on a large connected component. For ex-
ample, in a power delivery network—in the best case—every
producer could pass its power to any consumer, in a com-
munication network it is desirable that every member can
communicate with any other member, in a network encoding
physical contacts between subjects, small connected com-
ponents would be advantageous to inhibit the spreading of
disease. While in all these cases maybe other observables
might capture the functionality better, the size of the largest
connected component is a reasonable first approximation. In
the following we will mainly consider its relative size S.

As a second observable we take a look at the closely
related biconnected components, which are the maximal sub-
sets whose members are connected by two node-independent
paths. This means that one can remove any node from a bicon-
nected component and the remainder will still be a connected
component. The relative size S2 of the largest biconnected
component is therefore the most simple quantity to judge the
robustness against node removal or failure of a network.

Algorithmically, one can determine the size of all con-
nected and biconnected components in time O(|V | + |E |) by
performing one modified depth first search on a given graph
[26–28]. Note that a node can be part of two distinct bi-
connected components, such that the sum of the sizes of all
biconnected components might be larger than N .

A. Graph ensembles

The Erdős-Rényi (ER) graph is probably the simplest and
first studied random graph ensemble [2]. It consists of N
nodes, and any possible edge exists independently from all
other edges with a probability of p. If one is interested in
sparse graphs, it is convenient to parametrize the ensemble
with the connectivity c = N p, which is equal to the expected
degree. In particular, the ER ensemble shows a phase transi-
tion from a forest-like structure with connected components
of size O(log N ) to a structure with one giant connected
component of size O(N ) when increasing c above the crit-
ical threshold of cc = 1 [2]. Note that beyond the same
threshold cc = 1 a giant biconnected component of size O(N )
arises [18].

The stochastic block model (SBM) is a random graph
ensemble in which every node belongs with probability Pb

to block b. Similar to the ER the edges exist independently
with a fixed probability, but in the SBM the probability of
the edge {i, j} to exist depends on the blocks a, b of which
i and j are members of, i.e., pab. The diagonal of this block
matrix governs how tightly connected the nodes within a block
are, and the off-diagonal elements determine how tightly the
connections between distinct blocks are; e.g., if the diagonal
is zero, every realization will be bipartite. If the diagonal
elements are larger than the off-diagonal, the SBM is called
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FIG. 1. Two example realizations of the SBM with size N = 128
with two blocks (shape of nodes) of equal probability Pa = Pb =
0.5. The panels show realizations with different connectivities at
the percolation threshold (a) cintra = 0.1, cinter = 1.9 and (b) cintra =
1.9, cinter = 0.1. The largest connected components are visualized
with colored symbols. (c) Numerical solution of Eq. (4) showing the
percolation threshold of our particular SBM model. Note that the
lightest shade also signifies sizes π > 0.5.

assortative; if the off-diagonal elements are larger than the
diagonal, it is called disassortative. Note that a homogeneous
pab = p is equivalent to the ER. Since we will study sparse
SBM, we will parametrize the ensemble with connectivities:

cab = N pab. (1)

We want to perform a very in-depth study of an SBM
ensemble, therefore we will treat the simplest special case of
SBM, the planted partition; i.e., all blocks have the same in-
trablock (diagonal) connectivity cintra and the same interblock
(off-diagonal) connectivity cinter. Further we mainly handle
the simplest case, which is distinct from ER, i.e., B = 2
blocks, but later we also show some results for B = 3. Figure 1
shows two examples for different values of cinter and cintra.

The phase transition where a giant connected component
of size O(N ) arises happens for B = 2 at (cintra + cinter )/2 =
1 [cf. Eq. (5)]. One can derive this threshold by estimating
the size of the largest connected component analogously to a
method for ER [29].

We estimate the size of the largest connected component
by considering the probability π that a randomly selected
end node of a randomly selected edge is connected via other
edges with the giant component of the graph. This means that
π is the relative size of the largest connected component in
the asymptotic limit. Note that for the simple ER model with
connectivity c, the probability qd for degree d of a random-end
node of a random edge is given by qd = d pd/c, where pd is

the Poisson degree distribution. Here, apart from the block
memberships, there is no correlation in an SBM. We consider
the case of two blocks a and b with the same probability
Pa = Pb = 1/2 and a symmetrical block matrix. To derive the
probability pd , we first consider the probability p̃d1,d2 that a
node has degree d1 for connections within the same block and
degree d2 for connections to nodes of the other block. Since
both distributions are Poissonian, with Eq. (1) and because
the size of each subgraph is just N/2, such that the expected
number of neighbors in each subgraph is cintra/2 and cinter/2,
respectively, we obtain

p̃d1,d2 = e−cintra/2 (cintra/2)d1

d1!
e−cinter/2 (cinter/2)d2

d2!
. (2)

The probability of the total degree d we obtain by summing
over all possible combinations which sum up to d:

pd =
d∑

k=0

p̃k,d−k

= e−cintra/2−cinter/2
d∑

k=0

(cintra/2)k

k!

(cinter/2)d−k

(d − k)!

= e−cintra/2−cinter/2 1

d!

d∑
k=0

(
d

k

)
(cintra/2)k (cinter/2)d−k

= e−cintra/2−cinter/2 (cintra/2 + cinter/2)d

d!
, (3)

where we have used the Binomial formula (a + b)d =∑d
k=0

(d
k

)
akbd−k . Thus we obtain, quite intuitively, the orig-

inal Poissonian distribution with effective connectivity c =
cintra/2 + cinter/2 being the average connectivity. Hence, for
the case of B blocks of equal size, one would therefore still
see the standard Poissonian distribution with effective c =
(cintra + (B − 1)cinter )/B. More general cases are straightfor-
ward to obtain.

Therefore, to obtain the percolation threshold, one can pro-
ceed as for the standard case, which we recap very briefly for
completeness. We look at 1 − π , the probability that a node
reached by an edge is not connected to the giant component.
Under the assumption that small components are tree-like,
which is true in this case for the same reason as for the well-
known ER case, 1 − π can be determined self consistently:
Since the probability for each neighbor to be not connected
to the giant component via its other edges is again 1 −
π . This means 1 − π = q1 + (1 − π )q2 + (1 − π )2q3 + · · · .
Using qd = d pd/c and inserting Eq. (3) into this expression
we get

1 − π =
∞∑

d=1

e−c cd−1

(d − 1)!
(1 − π )d−1

= e−πc . (4)

From this expression we can derive the percolation thresh-
old, since solutions π > 0 (besides the trivial solution π =
0) become possible for c > 1, such that the percolation
threshold is

B = cintra + (B − 1)cinter. (5)
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Also, Eq. (4) can be easily solved numerically to estimate
the relative size π for arbitrary connectivity parameters. A
heat map of the solutions for π is shown in Fig. 1(c) where
the transition from a size of π = 0 to π > 0 is clearly visi-
ble; note the symmetry due to the symmetric dependence on
just c = cintra/2 + cinter/2. For intuition, consider the follow-
ing three edge cases: If cintra = cinter > 1, this reduces to the
well-known ER case. If cinter = 0 and cintra > 2, each block
behaves like an independent ER graph with c > 1, such that
inside each block giant components of size O(N ) form. If
cinter > 2 and cintra = 0, a bipartite giant component of size
O(N ) arises.

B. Large deviations and sampling method

We are interested in the whole probability distributions of
the above mentioned observables. This includes additionally
to the common events, which are often well characterized
by the mean and variance, also the tails of the distribution
characterizing extremely rare events. An especially important
class of distributions, which is said to obey the large-deviation
principle, consists of distributions parametrized by N , here the
size of the graph, with a probability density function PN (S)
which can be expressed in terms of a rate function �(S),
such that PN (S) = exp [−N�(S) + o(N )] [19]. Thus, �(S) is
independent of N , and the leading term in N is characterized
by the rate function. If such a rate function � exists, it means
that the tails of the distribution decay exponentially in N and
� governs how fast exactly the tails of the distribution decay.
If it has a single minimum and is twice differentiable, typical
events can be approximated as Gaussian distributed for large
N [30]. Clearly, this principle is not valid for every distribu-
tion, since they could decay slower or faster than exponential,
or exhibit singular behavior.

Therefore, we want to study whether a large-deviation
principle holds for the distribution of the size of the largest
connected component for this simple case of SBM. Since
the tool of our study is the computer simulation [31], we
can treat only realizations of finite size N , such that we can
only obtain the empirical rate function�N (S) = − 1

N ln[PN (S)]
for multiple sizes N . If we observe that the empirical rate
functions for different sizes converge to a limit shape, we
assume that this limit shape is the actual rate function and that
the large-deviation principle is valid here.

The main idea in obtaining the empirical rate functions,
which include information for extremely rare events, is to
perform a suitably tailored Markov chain Monte Carlo simu-
lation in the space of random graphs. Thus, the graphs are not
sampled independently, but it allows one to obtain data for the
extremely rare and atypical events. In the next section we will
see that the distributions of the size of the largest connected
component of the SBM often have a pronounced multipeak
structure. This led us to use the Wang-Landau (WL) method
[32,33], which is especially suited to overcome valleys in the
distribution (or energy landscape). Such valleys turned out to
be problematic for other methods employed previously by the
authors [21,22,24]. These valleys in the distribution were the
main hindrance for larger system sizes in previous studies of
the ER ensemble [21,22]. So, using WL sampling, we could
improve considerably on the size of the studied ER graphs.

Also, since the multipeak structure is even more pronounced
for the SBM, the WL method is the enabling factor for this
study.

To sketch the idea of the WL method, consider first that
an estimate g(S) of the actual distribution, which we are
searching for, was known in the beginning of the simula-
tion. Then one could construct a Markov chain of random
graphs G using the Metropolis-Hastings algorithm with an
acceptance probability to change from graph G to G′ of
pacc(G → G′) = min {1,

g(S)
g(S′ ) } depending on the observables

S = S(G) and S′ = S(G′) of interest. If the estimate is very
close to the actual distribution, a histogram H (S) of the values
encountered during this Markov chain would be very flat,
i.e., all bins would have about the same number of entries.
We can then use the deviations from flatness to improve our
estimate P(S) ≈ g(S)H (S)/〈H〉 [34], where 〈H〉 is the mean
count of all bins. This procedure is called entropic sampling
[35], fulfills detailed balance, and will therefore converge to
the correct searched-for distribution. The drawback is that it
may converge very slowly depending on the quality of the
initial guess g(S).

The ingenious idea of the WL method is to get an esti-
mate for g(S) by using the flatness of an auxiliary histogram
as a criterion to change g(S) during the evolution of the
Markov chain. Therefore every time an energy S∗ is visited,
the estimate is updated g(S∗) �→ f · g(S∗) using the refinement
factor f , which is usually initialized as f = exp(1) and re-
duced as soon as the histogram fulfills some flatness criterion
[33] or some set amount of change attempts was performed
[36]. First, we need to define the Monte Carlo time t in
sweeps, i.e., N change proposals. Here we use the schedule
of Refs. [36,37], where the logarithm of the refinement factor
ln f first decreases exponentially ln f �→ ln f /2 every time
each bin of the auxiliary histogram was visited at least once,
and this is checked every 1000 t . If this criterion is fulfilled,
the auxiliary histogram is reset. As soon as ln f < 1/t , ln f
is decreased as a power law after every sweep ln f �→ 1/t .
The algorithm stops as soon as ln f reaches a defined value of
ln ffinal, chosen as 10−5 in this study.

Since this means that pacc is time dependent, detailed bal-
ance does not hold and systematic errors might be introduced.
Therefore we subsequently perform entropic sampling, which
is theoretically sound, to remove any systematical error.

This technique depends on the choice of the histogram,
such that one has to be careful when choosing the binning.
Here, fortunately, we have a discrete problem, since the size
of the largest component is the number of nodes, such that we
can choose a perfect binning of N uniform bins, which does
not introduce any discretization error.

One can parallelize the WL method by performing it in-
dependently in multiple windows and matching the resulting
estimates using overlaps of the windows. We use up to 14
overlapping windows for this purpose. For each window 3 ×
105 sweeps are simulated: 105 sweeps to reach ln ffinal = 10−5

and 2 × 105 sweeps of entropic sampling. Per window this
takes for the largest simulated sizes around 40 hr (N = 2048
for S) to 70 hr (N = 1024 for S2) on relatively modern hard-
ware (Intel Xeon E5-2650 v4), fluctuating by approximately
50% in both directions depending on the connectivity of the
graphs and the acceptance rate.
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FIG. 2. (a) Distributions in logarithmic scale of the relative size
of the largest component S for ER (thick lines) and SBM (thin lines)
for different graph sizes over (almost) the full support. (b) Corre-
sponding empirical rate functions. A fast convergence to a limiting
shape is observable. Main plots show c = 2, respectively, cinter =
0.1, cintra = 3.9, and the insets show c = 0.5, respectively, cinter =
0.1, cintra = 0.9. In the main plot data for finite sizes are extrapolated,
and the extrapolation as the estimate of the rate function is shown
with symbols.

One of the most crucial aspects of any Markov chain Monte
Carlo simulation is the choice of the change move to generate
new trial graphs for the chain. Beyond the block membership
all edges are independent in the SBM, just like the ER. There-
fore we create a new trial graph G′ by selecting a node i in
the current graph G at random, removing all of its edges and
deciding for each other node j randomly whether edge {i, j}
is inserted with the appropriate probability depending on their
block memberships. This change move is ergodic and works
reasonably well.

III. RESULTS

In Fig. 2(a) we show for some system sizes the result-
ing distributions for the cases of low connectivity c = 0.5
(cinter = 0.1, cintra = 0.9) in the nonpercolating regime (inset)
and of higher connectivity c = 2 (cinter = 0.1, cintra = 3.9) in
the percolating regime. Here, and in the following, data for the
SBM are visualized with thin, dark lines and for the ER with
thick, lighter lines. If only one line is visible, the data of both
ensembles coincide. Different shades mark different sizes N .

Here we see that the SBM exhibits in the c = 2 case a strongly
different behavior than the ER. This manifests for the largest
system size in structures of the probability density function
(pdf) below probabilities of 10−15 and would therefore be
undetectable with conventional methods.

To foster intuition about the relation of the rate function
with the probability density, we show the empirical rate func-
tions �N (S) obtained from the probability density functions
in Fig. 2(b). For clarity only data for the SBM are visual-
ized. Here we observe that the smallest size N = 128 shows
nonmonotonous and rather large deviations, but �512(S) and
�2048(S) are already very close over large parts of the support.
The extrapolation is performed pointwise, at equal values of
S for multiple system sizes. We assume a power law with off-
set �N (S) = �∞(S) + aNb for the extrapolation, which was
already used before for this task [38] and fits our data quite
well. Since different system sizes have a different number
of bins, we interpolate �N linearly for convenience, which
should introduce only negligible error due to the dense bins.
Note that the minimum of the extrapolated estimate of the
rate function is at �∞(Smin) ≈ 0. The region around S ≈ 0.2
could not be extrapolated well due to the crossing of different
system sizes. For c � 1 we do not perform this extrapolation
since all system sizes already yield almost equal rate function
estimates. For clarity, we will not show the extrapolation in
following figures, since it always is very close to our data
for the largest system size; i.e., N = 2048 seems to be large
enough that the empirical rate function �N is sufficiently close
to our extrapolation �∞, which we handle as an estimate of
the actual asymptotic rate function.

Note that the nature of numerical studies is that we have to
rely on the problem being well behaved. While we have sizes
which are large enough to show a convergence to some value,
it is theoretically possible that this value is not the asymptotic
limit but only a “plateau” and that the behavior changes for
even larger system sizes. Since we know the exact behavior of
the rate function for the ER and we previously observed a very
nice and quick convergence of measurements in finite systems
with similar system sizes to the exact asymptotic form [21],
we argue that the simple SBM under scrutiny should be very
similarly well behaved.

Therefore, we conjecture that the large-deviation principle
holds for S and S2 of this variant of the SBM and is approxi-
mated by the empirical rate functions for the largest measured
sizes shown in the following figures. Since we observe this
above and below the percolation threshold, and because we
do not expect any other dramatic changes in the structure, this
should hold for all parameters cinter and cintra.

As a side remark, consider a finite temperature T ensem-
ble, where the occurrence of realizations was weighted with
a Boltzmann weight e−S/T , treating the size of their largest
connected component S as energy, studied, e.g., in Ref. [21].
The two-peak structure corresponds to two transitions of first
order at two distinct temperatures T . At one transition, two
large coexisting components appear, at the other transition,
one single biggest component emerges; see the discussion
below.

In Fig. 3 the empirical rate functions and distributions for
finite system sizes N are shown for different parameter sets,
especially below and above the percolation threshold.
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FIG. 3. The main plots show the empirical rate functions
�2048(S) for different connectivities of both the ER (thick lines)
and SBM (thin lines) ensemble, which coincide often: (a) c =
0.5, cinter = 0.1, cintra = 0.9; (b) c = 1, cinter = 0.1, cintra = 1.9; (c)
c = 4, cinter = 0.1, cintra = 7.9. Their insets show the corresponding
probability density functions for different sizes. Note that the nor-
malization for P(S) in the insets is such that the area under the curve
is unity (thus for better comparison we show densities although the
support is discrete).

The peculiar two-peak structure of the rate function of the
SBM above the percolation threshold in Figs. 2(b) and 3(c)
can be explained rather simply. The left peak consists of real-
izations, where two separate but large connected components

FIG. 4. Examples for SBM realizations at cinter = 0.1, cintra =
3.9, N = 256. The two blocks are visualized as nodes of different
shapes; the largest connected component consists of colored nodes.
These are realizations originating (a) from the left peak and (b) from
the right peak.

exist, one in each block. For c = 4 this peak is at S ≈ 0.5
since almost all nodes within one block are connected. For
c = 2 the connected components within a block are smaller,
such that we observe this peak at S ≈ 0.4. Figure 4(a) shows
an example realization of this type. Since it is exponentially
unlikely that no interblock edge exists, the occurrence of
this structure is exponentially suppressed, resulting in a value
of the rate function at this position larger than zero, and is
subsequently not visible in the distributions for moderately
large systems. Due to this mechanism, we expect that the left
peak will be suppressed at large sizes for all choices of the
connectivity parameters in the two-block planted partition, as
long as cinter > 0. Also beyond the planted partition, i.e., with
different connectivities between different blocks, we expect
that the second peak is suppressed for large sizes as long
as all interblock connectivities are nonzero. The main peak
at S ≈ 0.8, respectively, S ≈ 1, on the other hand, contains
the instances in which the connected components inside of
the blocks are connected with each other, as visualized in
Fig. 4(b).

Also note that the same two-peak structure exists in the
distribution of the largest biconnected component visualized
in Fig. 5(b). The main mechanism causing the second, smaller
peak is the same as for the largest connected component:
due to the low value of cinter it is more probable that two
biconnected components within each of the blocks are not
connected by two interblock edges. Since a split in two large
biconnected components is more probable than the split into
two large connected components, we can observe the second
peak for the smallest size N = 256 even in the linear scale
depiction of P(S2) shown in the inset of Fig. 5(b) but not
in P(S) in Fig. 5(a). The most probable size of the largest
bicomponent is naturally smaller than the most probable size
of the largest connected component at slightly larger than 0.4,
and correspondingly the maximum of the second peak is at
half this value, slightly larger than 0.2. The smaller magnitude
of the second peak is caused at least partially by a much higher
probability that there are no large biconnected components
inside the blocks, which leads generally to a broader distribu-
tion. Note that the vertical axis spans a far larger range in the
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FIG. 5. The main plots show the empirical rate functions (a)
�1024(S) of the relative size of the largest connected component
and (b) of the largest biconnected component �1024(S2) of both the
ER (thick lines) and SBM (thin lines) ensemble for c = 2, cinter =
0.1, cintra = 3.9. Note that the right tail reaches down to �1024 ≈ 3.8,
i.e., probabilities of P(S2) ≈ e−1024·3.8 ≈ 10−1690. Their insets show
the corresponding probability density for multiple sizes. Note that
the normalization is such that the area under the curve is unity (thus
for better comparison we show densities although the support is
discrete).

diagram for the biconnected component, which exaggerates
the difference.

The most striking property of the distributions P(S) for
different values of the connectivity is the surprising way they
differ between ER and SBM. We are able to assess these
differences since our large-deviation sampling approach gives
us access to the tails: Below the percolation threshold in
Fig. 3(a) the two distributions are visually indistinguishable,
in the peak (shown in the inset) as well as in the tails (shown
in the main plot). At the threshold in Fig. 3(b), one can see
significant deviations in the peak, but the tails are again indis-
tinguishable. Surprisingly, above the threshold in Figs. 3(c)
and 5(a) the peaks of the distributions are again visually
indistinguishable, but the tails show qualitatively different be-
havior with a far more pronounced second peak for the SBM
case.

For the assortative case cinter � cintra, which we study here
mainly, it is plausible that the size of the largest connected

component should differ the strongest near the threshold,
since here, close to the percolation threshold is the only
parameter regime where the interblock edges do matter at
all. Far below the threshold, the SBM realization consists
of trees with members from only one block, but since our
observable S does not account for the block memberships,
this is indistinguishable from ER. Far above the threshold the
blocks are connected components, and as long as there are
any interblock edges, the largest connected component will
typically include almost the whole graph, the same as the
ER case. Therefore, in the cinter � cintra case, only around
the threshold can the peaks of the distributions differ at all.
Note that these arguments are valid also for higher number
of blocks B and for more general connectivities between the
blocks, if they are assortative enough.

In the disassortative case cinter  cintra, we found that the
distribution P(S) is generally indistinguishable within our
high precision numerical data from the ER case, even in the far
tails (not shown). This is not surprising since the mechanism
of two unconnected clusters leading to the differences in the
assortative cases cannot occur in (almost) bipartite graphs.
We therefore conclude that the size of the largest connected
component does differ at most very weakly between this
simple SBM and ER. For the size of the largest biconnected
component the results are qualitatively the same and the same
arguments apply.

The balanced case cinter = cintra is equal to the ER ensemble
and therefore trivially does not differ.

As a more formal method to judge whether or not the peak
regions of ER and SBM are indistinguishable, we use the
Epps-Singleton test [39,40], which is designed to estimate the
probability pES that two samples from discrete distributions
originate from the same distribution. In order to smooth these
results, we average the p values obtained for 100 independent
pairs of samples, each containing 104 independent measure-
ments of the largest connected components. Note that such a
procedure diminishes greatly the power of the test, and one
would usually choose something like Fisher’s method to com-
bine independent p values. However, since for our purpose, we
want to explore a trend for large systems instead of analyzing
specific cases, the extremely conservative pES should still be
a useful and especially smooth metric.

We used this procedure to estimate pES for multiple values
of c, and in the case of the SBM, we fixed cinter = 0.1 and
varied cintra = 2c − cinter. Figure 6(a) shows the result of this
analysis. Very low values of pES signal that the two samples
originate from different distributions, i.e., the distributions
are distinguishable. High values, say, above the typical 5%
mark, signal that we cannot exclude the possibility that the
two samples originate from the same distribution. The exact
p values should not be taken too seriously, since they greatly
depend on the number of samples and are overestimated due
to our smoothing.

In accordance with our visual interpretation above, the
distributions for connectivities around the transition at cc = 1,
are distinguishable using this statistical test. In particular, the
range where the distributions are distinguishable shrinks with
increasing system size. Also note that using different statisti-
cal tests, like Kolmogorov-Smirnov [41] or Anderson-Darling
[40,42], leads to similar results (not shown).
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FIG. 6. (a) Average confidence of 100 Epps-Singleton tests that
two samples of S (with 104 measurements each), one obtained from
the ER and the other from the SBM with cinter = 0.1, cintra = 2c −
cinter , originate from the same distribution. Low values mean that
we can surely distinguish the two ensembles, high values mean
that we cannot. (b) Heat maps of the same Epps-Singleton tests
at N = 1024 for more combinations cinter and cintra for both B = 2
and B = 3. The solid line marks the corresponding community de-
tectability thresholds |cinter − cintra| = B

√
c [10], and the dashed line

shows the percolation threshold B = cintra + (B − 1)cinter . For every
pixel 2 × 106 independent measurements were used, smoothed using
the method explained in this paper. Note that the other branch of
the threshold for disassortative SBM is not visible due to the short
vertical axis. However, that region shows solid nondistinguishability.

In Fig. 6(b) we scrutinize for which values of the inter-
and intrablock connectivities, the main part of the distribution
allows us to distinguish ER from SBM, i.e., recognize that
there is some community structure in the network. There the
parameter space which can be distinguished is visualized with
dark colors. Note that Fig. 6(a) suggests that this dark region
should shrink from the right for larger sizes N . With this in
mind, this figure confirms our observations from before that
ER and SBM differ the most around the percolation threshold,
which is marked by a dashed line. It also shows that this distin-
guishability is given only at low values of c. This is expected
since using the size of the connected component one cannot be
able to distinguish ER from SBM when the connectivities are
high enough that the giant component almost always contains
every single node.

An interesting question coming to mind is whether this
behavior is also related to the transition from detectable

FIG. 7. Area A between empirical rate functions of ER and SBM
extrapolated using a fit of the form A(N ) = A∞ + aNb. The offset
A∞ at a connectivity of c = 1 is compatible with zero at A∞

1 = 3 ×
10−5 ± 7 × 10−5; i.e., the rate functions of ER and SBM appear to
become indistinguishable. For a connectivity of c = 2 we obtain an
offset A∞

2 = 0.007(1), and for c = 4 (not shown to preserve detail
of the plot) A∞

2 = 0.12(2), i.e., the rate functions of ER and SBM
appear to stay distinct. This behavior A∞(c) is shown in the inset.

community structure to undetectable community structure
|cinter − cintra| > B

√
c [10]. Therefore, we also marked the

community detection threshold with a solid line, i.e., realiza-
tions right of the solid line can be used to reconstruct the
block membership of the nodes, e.g., by the sophisticated
methods of Ref. [10]. For B = 2 the distinguishability using
P(S) and the community detection threshold are quite close to
the percolation threshold at small values of cinter. The B = 3
case on the right of Fig. 6(b), especially considering that the
distinguishable region (darkly marked) should shrink from
the right for larger values of N [cf. Fig. 6(a)], shows that
the community detection threshold is located at considerably
higher values of cintra than the sparsest realizations we can dis-
tinguish. Thus it appears that P(S) can distinguish community
structure (or some structure absent in ER) in realizations with
low connectivity where the actual detection of communities
is impossible. Interestingly, it seems that realizations whose
communities can be reconstructed (right of the solid line)
cannot be distinguished by the typical behavior of S. Here sys-
tematic, numerically, and also demanding studies for various
larger values of B could possibly be of interest.

Note that the behavior of the tail, which obviously differs
for large c, e.g., in Fig. 5(a), is immaterial for this statistical
test. For analysis of the tail behavior, we will introduce the
area between the empirical rate functions

A =
∫ 1

0
dS

∣∣�SBM
N (S) − �ER

N (S)
∣∣ (6)

as a measure of distinguishability.
In Fig. 7 the area A between the empirical rate functions is

shown for multiple system sizes N at connectivities of c = 1
and c = 2. To estimate whether the differences between the
empirical rate functions are finite-size effects, or persist in the
infinite limit of the rate function, we extrapolate the area to
infinite systems using the ansatz A(N ) = A∞ + aNb, which
fits quite well to the data. We find that for c = 1 the area
A∞ and therefore the difference vanishes within error bars in
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the limit of infinite systems. The rate functions for c = 2, on
the other hand, stay clearly distinct between ER and SBM.
This distinctiveness increases for larger values of c (and fixed
cinter), which is shown in the inset of Fig. 7. This means,
that given the far tails of the distribution, we can determine
the existence of blocks not only at and closely beyond the
percolation threshold but also far above it.

To gather insight how configurations with especially large
or especially small biconnected components look, we consider
the correlations between the size of the connected and bicon-
nected components. Using Bayes’ theorem, we can estimate
parts of the joint probability density P(S, S2) from a single
WL simulation. Therefore we save during the entropic sam-
pling phase the pairs (S, S2) of observables we encountered
in the Markov chain and estimate the conditioned probability
P(S|S2) from them. This can be used with the result of the
WL simulation, P(S2), to obtain a part of the joint probabil-
ity density P(S, S2) = P(S|S2)P(S2). Note, that with a much
higher numerical effort it would also be possible to obtain
the full joint probability density using a two-dimensional WL
variant [33]. In Fig. 8 parts of the joint probability density
are shown. One notices that the correlations for the SBM
above the percolation threshold show a surprising multimodal
structure, which is marked and labeled in black. However,
we will see that this is actually plausible, and we will dis-
cuss the structure of the realizations inside each of the three
regions.

In the region labeled D (divided), which is not present in
the ER, we see that inside of the highly connected blocks
of the SBM, which are not yet connected to each other,
biconnected components exist [cf. Fig. 8(b)]. The group of re-
alizations, labeled O (one connection), indicates that there is a
considerable amount of realizations where already giant con-
nected components spanning both blocks exist (S > 0.5), but
the largest biconnected component is still restricted to one of
the blocks with S2 < 0.3. These are mostly realizations where
the connected components inside each block are connected by
a single edge (or multiple edges arriving at a single node) [cf.
Fig. 8(c)]. Part of this region is also, though less often, con-
figurations with a biconnected component inside one block
connected to multiple tree-like structures consisting of nodes
of the other block. Interestingly both types of configuration
coexist in our simulations. Since both of these groups rely on
the high intrablock connectivity, they do not occur in the ER
ensemble.

In the region labeled M (multiple connections) of Fig. 8,
which also occurs for the ER, one sees perfect correlation be-
tween the size of the two types of components. The larger the
biconnected component should be, the larger the connected
component has to be. Here SBM and ER match very nicely.
An example realization is shown in Fig. 8(d). The region O
does not smoothly go over into region M, and both coexist for
the same size of the giant component, such that both marginal
probabilities show the two-peak structure we observed before.

We will use the end of the results section to make some
educated guesses about the behavior of planted partitions with
more blocks B. We would expect that basically the same
patterns should occur as in the previous case, where the
connected and biconnected components span different com-
binations of clusters. Since each cluster will have roughly a

FIG. 8. Comparison of parts of the joint probability density
P(S, S2). SBM (cinter = 0.1, cintra = 3.9) is shown in the main plot,
ER (c = 2) in the inset. The data are for N = 1024 and collected dur-
ing the entropic sampling of a WL simulation of the size of the largest
biconnected component. The color scale is compressed to increase
the visibility of the central structures despite the very large range
of probabilities to be visualized. For white points no corresponding
samples (S, S2) were encountered during the entropic sampling. Here
the space is discretized into 64 × 64 bins. The black lines are guides
to the eye and indicate the regions of highest probabilities. The
corresponding labels are referenced in the text. The three classes
identified in (a) are illustrated with examples of size N = 128 with
highlighted largest biconnected component: (b) example of region D,
(c) example of region O, and (d) example of region M.

size of order 1/B and the biconnected component may never
span more clusters than the connected component, there are
B(B + 1)/2 possible combinations, which should all manifest
as a local maximum in the joint probability. Using the same
arguments as in the B = 2, we would expect that every local
maximum, except the one where all clusters are part of the
biconnected component, corresponding to region M, should
be exponentially suppressed.

For the marginal probabilities P(S) [and P(S2)], this sug-
gests that there should be B peaks, corresponding to one
to B (doubly) connected clusters. Like we observed for the
B = 2 case, all but the one corresponding to region M, where
all clusters are (doubly) connected should be exponentially
suppressed. However, the width of the peaks in our data sug-
gests that those B peaks might not be clearly distinguishable,
especially for larger values of B.
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IV. CONCLUSIONS

Here we studied the distributions of the relative size of
the largest connected S and biconnected components S2 for
the stochastic block model with two blocks and strong in-
trablock connectivity. By using sophisticated large-deviation
algorithms, we are able to study the distributions down to
probabilities as small as 10−800 or below, which gives us
access to (almost) the full distributions. Due to the fast con-
vergence to a limiting shape of the empirical rate functions
we conjecture that the large-deviation principle holds for these
distributions. Further, we showed where there are similarities
to the Erdős-Rényi graph ensemble and for which parameters
there are differences in different parts of their distributions.
Especially, we show large qualitative differences in the tails
of extremely rare events, where the peak regions are indis-
tinguishable. These differences seem to be correlated with
the threshold of the percolation transition. By analyzing the
correlations between the largest connected and largest bicon-
nected component, which was also possible in the regime of
rare events, we could identify three regimes of behavior (cf.
Fig. 8). This case study led to insight into the structure of some
rare configurations of the SBM, which led to some educated
guesses which behavior is expected in other regions of the
parameter space.

In general, our study shows that by analyzing the tails
of probability distributions for random graphs, differences
between ensembles can be found which are not detectable by
standard simple sampling simulations. In the studied case, this
even works although the percolation transition behavior can
be directly mapped between the two ensembles using an ef-
fective connectivity. It is rather surprising that there are subtle
differences in the extremely simple observables we studied
between two similar models, which are inaccessible with a
conventional analysis. Thus, large-deviation simulations offer

access to otherwise hidden properties of networks and to cor-
relations between network quantities. Here we demonstrated
that they can be used in an exploratory way to explore even
models with multiple free parameters (N , cinter, cintra, B) and
guide the search for parameter ranges with distinct behavior
by allowing the direct examination of fringe cases. Due to
the existence of many different network ensembles, network
processes, and measurable quantities, many new results will
likely emerge from applying this and similar approaches to
gain deep insight into the properties of networks. Of particular
interest could be to study modified ER models with varying
degree of (general) (dis-) assortativity by introducing degree
correlations, to see how this shows up in the distributions P(S)
and P(S2), and to compare with the SBM, which is a special
case. A thorough (but necessarily numerically demanding)
study could indicate what is a minimal degree of (dis-) as-
sortativity to make a difference to the ER significant.
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