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Introduction

» Opinion dynamics

evolution of opinions in a society of agents with time
» Homophily (here: bounded confidence)

agents influence only similar agents
» Social influence

influence makes agents more similar

Can we observe complex emergent behavior?
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Hegselmann-Krause bounded confidence model
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N agents

each with opinions z; € [0, 1]

each with confidence ¢;, but for our study ¢; = ¢

neighbors are topological neighbors on a static network which are also similar in
opinion with |z; — x| <&

compromise with your neighbors z;(t + 1) = ﬁ > jen i)

possible stationary states: consensus or fragmentation

measure mean size of largest cluster (S) to detect consensus
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N agents

each with opinions z; € [0, 1]
each with confidence ¢;, but for our study ¢; = ¢

neighbors are topological neighbors on a static network which are also similar in
opinion with |z; — x| <&
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Hegselmann-Krause bounded confidence model
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N agents

each with opinions z; € [0, 1]

each with confidence ¢;, but for our study ¢; = ¢

neighbors are topological neighbors on a static network which are also similar in
opinion with |z; — z;| <&

compromise with your neighbors z;(t + 1) = ﬁ > jen Zi(t)

possible stationary states: consensus or fragmentation

measure mean size of largest cluster (S) to detect consensus
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Hegselmann-Krause bounded confidence model
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each with confidence ¢;, but for our study ¢; = ¢
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For which ¢; do we expect consensus?

Complete graph topology:
» ¢ 2> 0.2 always consensus (for large N) [1]
» larger ¢ typically leads faster to consensus
Sparse topology:
» Unanimity threshold worsens for sparse topologies (g, ~ 0.2 — 0.5) [2]
» Does the ability to reach consensus also deteriorate?

» Are there differences between lattices and random networks?

[1] Hegselmann, Krause, 2002, [2] Fortunato, 2004
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The well known case: Mixed population

1.0 .

0.8 .
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204l N =512 i

N = 4096
0.2 N = 32768 —— -
N = 262144 ——

0.0 ' '

0 0.1 0.2 0.3

» Sharp transition at £, = 0.1926(5)
» bifurcation patterns: regions with m opinions

Largest systems simulated to date,
enabled by efficient algorithm [3]

[3] Schawe, Herndndez, 2020
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https://dx.doi.org/10.1038/s41598-020-64691-0

Lattices: A Lower critical value

Square lattice with third nearest neighbors, mean degree (k) = 12
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Lattices: A Lower critical value

Square lattice with third nearest neighbors, mean degree (k) = 12
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0.2 - N = 16384 — -
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€

» still a sharp transiton but at much lower . = 0.0801(7)
P unanimity threshold increases to €, = 0.5

» bifurcations vanish (i.e., no polarized state)
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Random Networks: Bridges to consensus

Barabasi Albert Graph with mean degree (k) = 10
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» crossover to consensus shifts as a power law to . = 0
» unanimity threshold stays at ¢, = 0.5
» bifurcations vanish, polarization is preserved

= For a sufficiently large system, there will be consensus
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Random Networks: Bridges to consensus

Barabasi Albert Graph with mean degree (k) = 10
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» crossover to consensus shifts as a power law to . = 0
» unanimity threshold stays at ¢, = 0.5
» bifurcations vanish, polarization is preserved

= For a sufficiently large system, there will be consensus
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Random Networks: Bridges to consensus

How does this work?
t=20
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Random Networks: Bridges to consensus

How does this work?
t =100
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Random Networks: Bridges to consensus

How does this work?
t = 1000
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Random Networks: Bridges to consensus

How does this work?
t = 9000
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Random Networks: Bridges to consensus

How does this work?
final configuration
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Random Networks: Bridges to consensus

How does this work?

» synchronous updates enable long lived
bridges

» over many iterations they pull the clusters
together

» bridges are rare configurations, but one can
be enough

» larger systems have higher probability to
contain one

CY UNIVERSITE  Schawe, Fontaine, Herndndez

7/9



What about the Deffuant model?

It is the second famous bounded confidence model.

» sequential pairwise update excludes the possibility for bridges
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Conclusions

» Sparse networks foster consensus at the cost of long convergence times

» mixed population, lattices and random networks show three otherwise
fundamentally different behaviors

» find more details in Phys. Rev. Research 3, 023208 (2021) (arxiv:2102.10910v2)
» raw data at https://doi.org/10.5281/zenodo.4288672
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Appendix: Bonus Slides
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What is the problem when simulating the mixed population?

» At each time step each agent has to average over all neighbors = O(N?)
» Introducing new algorithm [3]

» |t is only necessary to touch the neighbors, which are far fewer for low ¢;

» Converged clusters look for another agent like a single agent with high weight

P allows us to gather good statistics for systems two orders of magnitude larger
(N = 262144) than what is typically studied

[3] Schawe, Hernandez, 2020, code at github.com/surt91/hk_tree
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Introducing a faster algorithm.

» Save all opinions in the system in a search tree (binary tree, B-tree, ...)
P> to average the neighbors of agent ¢
» find the smallest opinion z; > x; —¢; in O(log(V))
» traverse the tree in order and stop averaging on encountering x; > x; + &;
» if a value x; occurs more than once in the tree, assign it a weight
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