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Abstract
We investigate the statistics of the convex hull for a single run-and-tumble parti-
cle (RTP) in two dimensions. RTP, also known as the persistent random walker,
has gained significant interest in the recent years due to its biological applica-
tion in modelling the motion of bacteria. We consider two different statistical
ensembles depending on whether (i) the total number of tumbles n or (ii) the
total observation time t is kept fixed. Benchmarking the results on the perime-
ter, we study the statistical properties of the area of the convex hull for a RTP.
Exploiting the connections to extreme value statistics, we obtain exact analyt-
ical expressions for the mean area for both ensembles. For fixed-t ensemble,
we show that the mean area possesses a scaling form in γt (with γ being the
tumbling rate) and the corresponding scaling function is exactly computed.
Interestingly, we find that it exhibits a crossover from ∼t3 scaling at small
times

(
t � γ−1

)
to ∼t scaling at large times

(
t � γ−1

)
. On the other hand,

for fixed-n ensemble, the mean expectedly grows linearly with n for n � 1. All
our analytical findings are supported with the numerical simulations.
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1. Introduction

Active matter refers to a class of driven non-equilibrium systems that transduces systematic
movement out of the supplied energy. Contrary to the boundary-driven systems, the energy
is exchanged at the local scale which endows the constituent particles with self-propulsion
[1–3]. As a result, the dynamics of these systems break time-reversal symmetry and thus, vio-
late the detailed balance. Recently, the self-propulsion (or ‘active’ nature) has been harnessed
to produce useful work for potential therapeutic applications in various diseases like cancer and
heart disease [4, 5]. Furthermore, they display a plethora of complex features like clustering
[6, 7], flocking [8, 9], motility induced phase separation [10–13], non-existence of the equation
of states for pressure [14] and so on. Going beyond the theoretical studies, the dynamics
of active particles has been realised in many experiments based on different phoretic effects
[15, 16].

Run and tumble particle (RTP) has emerged as a quintessential model in mimicking the
dynamics of the active particles. Previously known in the random walk literature as persistent
Brownian motion [17, 18], the RTP motion has recently been quite extensively studied due to its
biological application in modelling the motion of bacteria like Escherichia coli [10, 19, 20]. In
this model, the particle moves in a series of ballistic runs interspersed by instantaneous tumbles
that occur after random time durations with constant rate γ. During tumble, the particle does
not move but chooses a new direction for the next run. Exact model is introduced in section 2.
Over the recent few years, this model has been substantially studied and a variety of results are
known. Examples include—position distribution in free space as well as in confining poten-
tial [21–27], condensation transition [28–30], persistent properties [31–33], extremal prop-
erties [34, 35], path functionals [34, 36], current fluctuations [37], interacting multiple RTPs
[27, 38–41], etc.

In this paper, we are interested in the statistics of the convex hull for a RTP in two dimen-
sions. Consider a set of points (�r1,�r2, . . . ,�rN) in two dimensions which represent the positions
of a RTP at various instances of time. Then, convex hull refers to the unique smallest convex
polygon that encloses all these points [42, 43] (see figure 1). Since the motion is random, the set
(�r1,�r2, . . . ,�rN) also varies over realisations. This implies that the convex hull is also different
for different realisations. We are interested in the statistical properties of this random convex
hull. As stated before, the run and tumble dynamics is used to model the motion of bacteria
like E. coli [19]. One natural question is—what is the spatial extent over which bacteria move
during their search activities? One way to estimate this is by constructing the convex hull for
the trajectories of the particles. In fact, in ecology, convex hull has been used in estimating the
home-range size of animals from their locational data [44]. Hence, a knowledge of the convex
hull may also be useful for bacteria in designing and demarcating their mobility territory. This
motivates us to study the convex hull problem for a RTP in our paper.

The properties of the convex hull have been of prime interest in the mathematics literature
also [45–49]. In physics, the mean area and the mean perimeter of the convex hull are found to
be related to the subject of extreme value statistics [50]. Exploiting this connection, the mean
area and the mean perimeter have been studied for a variety of processes like Brownian motion
[51], random acceleration [52], diffusion with resetting [53], random walk and its generalisa-
tions [54–61]. Extensions of these studies to higher dimensions and multi-particle case have
also been considered [50, 62–64]. Going beyond the mean values, the entire distributions of the
area and perimeter have also been studied using sophisticated numerical techniques [55–57].
We refer to [50] for a review on the convex hull problem.
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Figure 1. (a) Schematic representation of a typical trajectory of a RTP in two dimensions
with total number of runs n = 6. The RTP moves in a series of runs interspersed by
instantaneous tumbles that occur after random times with rate γ. (b) This figure shows
the convex hull (red polygon) for the trajectory on the left.

Recently in [65], the mean perimeter of the convex hull for a RTP in a plane was exactly
computed for the two different ensembles—(i) fixed number of tumbles n and (ii) fixed obser-
vation time t (discussed later). Here, we go beyond this work to investigate the statistics of the
area of the convex hull for a two dimensional RTP. For both ensembles, we compute the mean
area exactly. We verify our analytical results numerically and, also study the variance and the
distribution of the area numerically.

The paper is organised as follows: in section 2, we introduce the model and summarize the
main results of our paper. Section 3 contains a brief discussion on the convex hull problems
for the general 2D stochastic processes. Analytic calculations for the mean area are presented
in section 4 for the fixed-n ensemble and in section 5 for the fixed-t ensemble. We devote
section 6 for the numerical study of the probability distribution of the area which is followed
by the conclusion in section 7.

2. Model and summary of the results

We consider a RTP moving on a plane. Starting from the origin, the particle chooses an angle
φ1 (measured with respect to the x-axis) uniformly from [0, 2π] and moves ballistically in that
direction with a speed v0. The ballistic motion, referred to as a ‘run’, persists alongφ1 for a ran-
dom time τ 1 drawn from the exponential distribution ρ(τ ) = γ e−γτ with constant rate γ. After
this, the particle ‘tumbles’ instantaneously in which it chooses a new direction φ2 uniformly
from [0, 2π]. Then, it performs another run for a random time τ 2 again drawn independently
from ρ(τ ) = γ e−γτ . The motion continues in the form of the ballistic runs interspersed by the
instantaneous tumbles that occur after random times drawn independently from the exponen-
tial distribution. Let us focus on the ith run along the direction φi. Denoting the displacement
(position increment) during ith interval by (xi, yi), we have

xi = v0τi cos(φi), (1)

yi = v0τi sin(φi), (2)

where τ i is the total duration for ith run. The position of the particle (Xi, Yi) after ith run can
be written in terms of (xi, yi) as
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Xi = Xi−1 + xi, (3)

Yi = Yi−1 + yi, (4)

where i = 1, 2, . . . and we assume (X0, Y0) = (0, 0). As mentioned earlier, we consider the
motion of the particle in two different ensembles with—(i) fixed number of tumbles (n) and
(ii) fixed observation time (t). In case (i), the particle undergoes n number of runs and we stop
the process after n runs have taken place. The total observation time t will fluctuate for different
realisations. Moreover, we consider the starting point as a tumble which makes the number of
runs equal to the number of tumblings and n � 1. On the other hand, for ensemble (ii), we fix
the total observation time t and therefore, the number of tumblings n fluctuates for different
realisations. We will refer to (i) as fixed-n ensemble and (ii) as fixed-t ensemble.

For these two ensembles, we look at the statistical properties of the convex hull. Although,
in actual bacterial motion, the dynamics takes place in continuous time, it turns out that our
calculation is much simpler in the fixed-n ensemble, than in the fixed-t ensemble. This is like
the canonical versus grand-canonical ensembles. Usually, in the grand-canonical ensemble,
where the number of particles fluctuates, it is often easier to calculate the observables than in
the canonical ensemble where the number of particles is fixed. However, in the RTP problem,
it is the opposite: it is easier in the fixed-n ensemble than in the fixed-t ensemble where n
fluctuates. The two ensembles are equivalent at late times (as the canonical and the grand-
canonical ensembles are equivalent in the thermodynamic limit). But they are different for
finite n/finite t. In many experimental situations, the experimental timescale is limited (finite)
which means it is important to know the effects of finite t. Besides, the ‘active’ nature of the
process also shows up only at short times (t � γ−1) or intermediate times (t ∼ γ−1). At large
times t � γ−1, the RTP process is essentially indistinguishable from the Brownian motion.

Recently, the mean perimeter of the convex hull for this model was computed exactly for
the two ensembles and the distribution for the perimeter was numerically studied [65]. Here,
we investigate the statistics of the area of the convex hull both analytically and numerically.
Using connection to the extreme value statistics developed in [50, 51], we compute the mean
area in the two ensembles exactly. Next, we also investigate the variance and the distribution
of the typical fluctuations of the area. Our main results are summarised below:

(a) For fixed n ensemble, we find that the mean area 〈An〉 is given by

〈An〉 =
v2

0

2γ2
Sn, n > 1, (5)

where the term Sn is given by

Sn =
2 + π√

π

[
Γ
(

n−1
2 −

⌊
n−3

2

⌋)
Γ
(

n
2 − 1 + 	 3−n

2 

) + Γ

(
n
2 + 1 −

⌊
n
2

⌋)
Γ
(

n+1
2 −

⌊
n
2

⌋) − Γ
(

n+2
2

)
Γ
(

n+1
2

) − Γ
(

n+1
2

)
Γ
(

n
2

) ]Θ(n − 1)

+

n−1∑
m=1

Γ
(

n−m+1
2

)
Γ
(

n−m+2
2

) [Γ (2 +
⌊

m−1
2

⌋)
Γ
(

3
2 +
⌊

m−1
2

⌋) + Γ
(

3
2 +
⌊

m
2

⌋)
Γ
(
1 +
⌊

m
2

⌋) ] . (6)

Here �z� (or 	z
) denotes the greatest (or least) integer lesser (or greater) than or equal
to z. For large n, we find that Sn  πn and inserting this in equation (5) yields

〈An〉 
nπv2

0

2γ2
, as n →∞. (7)
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(b) On the other hand, for fixed t ensemble, we find that the mean area 〈A(t)〉 obeys the scaling
relation

〈A(t)〉 = v2
0

2γ2
J (γt), (8)

where the scaling function J (w) is given by

J (w) = e−w
∞∑

n=2

Sn

Γ(n + 2)
wn+1. (9)

The scaling function J (w) displays the following asymptotic behaviours:

J (w)  w3

3π
+ O(w4), as w → 0, (10)

 πw + O(
√
w), as w→∞. (11)

Inserting these forms in equation (8) yields that 〈A(t)〉 exhibits a crossover from ∼t3

scaling for t � γ−1 to ∼t scaling for t � γ−1:

〈A(t)〉  γv2
0 t3

6π
+ O(t4), for t � γ−1 (12)

 πv2
0

2γ
t + O(

√
t), for t � γ−1. (13)

The comparisons of the analytic expressions in equations (5) and (8) with the numerical
simulation are illustrated in figure 2.

(c) We have also studied the variance and the distribution of the area in both ensembles numer-
ically. We found that for large time (n in the fixed-n ensemble and t in the fixed-t ensemble)
the variance of the area grows quadratically with time. In addition we found that the cen-
tral part of the distribution (describing the typical fluctuations around the mean) for large
time possesses a scaling form when the area is scaled by its mean and the scaling form
matches with that of the Brownian motion, as expected.

In what follows, we derive the results for the mean area explicitly and study its typical
fluctuations numerically.

3. Mean area of the convex hull

Let us begin by briefly summarising the central idea to compute the mean area of the convex
hull for two dimensional stochastic processes. A more detailed account of this idea is given in
[50, 51]. Based on the knowledge of the Cauchy’s formulae for closed curve [66], it was shown
that the mean area and the mean perimeter for random convex hulls are related to the subject
of the extreme value statistics. To see this connection, consider a closed curve C parametrised
by the points {(X (s),Y(s))} on its boundary where s is the arc length. For this curve C, we now
define the support function M(θ) along the direction θ (with respect to the x-axis) as

M(θ) = max
s∈C

[X (s) cos θ + Y(s) sin θ] . (14)

Geometrically, the support function M(θ) represents the maximum extension of the curve C
along the direction θ. Interestingly, the perimeter and the area of the domain enclosed by C are
given in terms of M(θ) by the Cauchy’s formula as
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L =

∫ 2π

0
dθM(θ), (15)

A =
1
2

∫ 2π

0
dθ
[
M2(θ) −

(
M′(θ)

)2
]

, (16)

where M′(θ) = dM(θ)
dθ . To elaborate further, let us, for simplicity, consider a discrete time

stochastic process of n steps. Let the positions of the particle at successive (discrete) times
of a realisation be denoted by {(Xi, Yi)} where i = 1, 2, . . . , n. We further consider that the
curve C now represents the convex hull corresponding to the points {(Xi, Yi)}. To construct
the support function M(θ) for C, one clearly needs {(X (s),Y(s))} which is a difficult task.
However, it was shown in [50, 51] that this problem can be circumvented by noting the fact
that M(θ) is also the maximum of the projections of all points {(Xi, Yi)} along the direction
θ. One can now write the support function M(θ) as

M(θ) = max
1�i�n

[Xi cos θ + Yi sin θ] . (17)

Using this form for M(θ) in equations (15) and (16) and then taking average over different
realisations one gets the mean perimeter and the mean area of the convex hull C. Since, we
are interested in area only, we provide below the expression of the mean area which follows
directly from equation (16):

〈An〉 =
1
2

∫ 2π

0
dθ
[
〈M2(θ)〉 − 〈

(
M′(θ)

)2〉
]
. (18)

To proceed further, we assume that the maximum in equation (17) is attained in the k∗th step
which enables us to write M(θ) and M′(θ) as

M(θ) = Xk∗ cos θ + Yk∗ sin θ, (19)

M′(θ) = −Xk∗ sin θ + Yk∗ cos θ. (20)

For isotropic processes, the support function 〈M2(θ)〉 and 〈M′2(θ)〉 are independent of θ and
we can consider just the direction θ = 0. Then, the mean area in equation (18) becomes

〈An〉 = π
[
〈M2

n〉 − 〈Y2
k∗ 〉(n)

]
, (21)

where Mn = max [X1, X2, . . . , Xn] is the maximum displacement along the x-axis and Yk∗ is the
abscissa at k∗th time-step at which the maximum Mn along the x-direction is reached. Later,
equation (21) will be useful in calculating the mean area of the convex hull for a RTP in the
fixed n ensemble.

Although equation (21) is derived for the discrete time isotropic stochastic process, one can
derive an analogous formula for the mean area of C in the continuous time case [50]. For this
case, the mean area of the convex hull reads

〈A(t)〉 = π
[
〈M2(t)〉 − 〈Y(tm)2〉(t)

]
, (22)

where M(t) is the maximum of the x-coordinate until observation time t i.e.
M(t) = max[{X(τ )}, ∀ 0 � τ � t] and tm is the time at which this maximum M(t) is reached.
Also, Y(tm) represents the y-coordinate of the RTP at time tm. Once again, equation (22) will
be useful in computing the mean area for a RTP in the fixed t ensemble.

6



J. Phys. A: Math. Theor. 55 (2022) 225001 P Singh et al

Before closing this section, we remark that the formulae of the mean area in equations (21)
and (22) apply to general isotropic 2D stochastic process. In the following, we use these for-
mulae to compute the mean area of C for the RTP model in two dimension. We first compute
the mean area for the fixed-n ensemble and then focus on the fixed-t ensemble.

4. Mean area for fixed-n ensemble

Let us first look at the RTP in the fixed-n ensemble where the total number of runs n is fixed
but the total time t varies for different realisations. As indicated by equation (21), we need the
maximum Mn of the x-coordinate and the corresponding abscissa Yk∗ (n) to compute the mean
area 〈An〉. Recall from equations (3) and (4), the position coordinates of the RTP perform
random walks with correlated increments ( jumps) (xi, yi) which are given in equations (1) and
(2). Also recall that we have chosen the initial position of the RTP to be (X0, Y0) = (0, 0). Let
us first compute the joint probability distribution p(xi, yi, τ i) of the increments xi and yi and
the time duration τ i for the ith run. Since the RTP moves ballistically during time τ i, we have
v0τi =

√
x2

i + y2
i . Also, the time τ i is exponentially distributed ρ(τi) = γ e−γτi . This enables

us to write the joint distribution p(x, y, τ ) as

p(x, y, τ ) =
γ e−γτ

π
δ(v2

0τ
2 − x2 − y2), (23)

where the factor 1/π comes from the normalisation condition. Finally, integrating p(x, y, τ )
over τ , we get the joint distribution of the increments x and y as

p(x, y) =
γ

2πv0

√
x2 + y2

exp
(
−γ

v

√
x2 + y2

)
. (24)

Notice that, the problem of the run and tumble motion now got mapped to a model of a random
walk in two dimensions with the jump distribution p(x, y) given in equation (24). Such map-
pings have been considered in [32] to study the persistent properties of the RTP. Since the jump
distribution p(x, y) is isotropic, we use the formula for the mean area in equation (21), true for
the discrete time processes, for RTP also. In what follows, we use this equation to compute the
mean area of the convex hull for the fixed-n ensemble. From equation (21), we see that this
reduces to the problem of computing 〈M2

n〉 and 〈Y2
k∗ 〉(n) which we calculate below.

4.1. Computation of 〈M2
n〉

In order to compute the second moment of the maximum Mn = max{X0, X1, X2, . . . , Xn} of
the x-component of a given trajectory of n steps, we first recall that {X0, X1, X2, . . . , Xn} denote
just a one dimensional random walk trajectory such that Xi = Xi−1 + xi. The increment xi is
distributed according to the probability distribution p1(xi) which is obtained by integrating the
joint distribution p(xi, yi) in equation (24) over all yi. The resulting expression reads

p1(x) =
∫ ∞

−∞
dy p(x, y) =

γ

πv0
K0

(
γ|x|
v0

)
, (25)

where Kν(z) is the modified Bessel function of second kind. Note that p1(x) is both symmetric
and continuous. Hence the random walker is characterised by the identical and independent
increments {xi} drawn from the symmetric and continuous distribution p1(xi).

To calculate 〈M2
n〉, we use the Pollaczek–Spitzer formula [46, 67] which characterises the

maximum Mn for a random walker with identical and independent increments drawn from
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the symmetric and continuous distribution. If Qn(M) = Prob[Mn � M] denotes the cumulative
probability of Mn, then according to the Pollaczek–Spitzer formula, Qn(M) satisfies [54, 68]:

∞∑
n=0

zn〈e−λMn〉 =
∞∑

n=0

zn

∫ ∞

0
dM e−λMQ′

n(M) =
φ(z,λ)√

1 − z
, (26)

where 0 � z � 1 and λ � 0 and the function φ(z,λ) is defined as

φ(z,λ) = exp

(
−λ

π

∫ ∞

0
dξ

ln(1 − zp̂1(ξ))
λ2 + k2

)
, (27)

with p̂1(ξ) being the Fourier transform of p1(x) and is given by

p̂1(ξ) =
∫ ∞

−∞
dx eiξx p1(x) =

1√
1 + ξ2σ2

. (28)

We have inserted p1(x) from equation (25) in writing p̂1(ξ) and defined σ = v0
γ

. One can suit-
ably use equation (26) to compute all moments of Mn. By expanding equation (26) in λ, one
finds that the generating functions of the first two moments are given by [54, 69]

h(1)(z) =
∞∑

n=0

zn〈Mn〉 =
1

π(1 − z)

∫ ∞

0

dξ
ξ2

ln

(
1 − zp̂1(ξ)

1 − z

)
, (29)

h(2)(z) =
∞∑

n=0

zn〈M2
n〉 = (1 − z)

[
h(1)(z)

]2
+

σ2z
2(1 − z)2

. (30)

By appropriately differentiating h(2)(z) with respect to z, it is straightforward to show that the
second moment 〈M2

n〉 can be expressed completely in terms of the first moment 〈Mn〉 as

〈M2
n〉 =

n−1∑
m=1

〈Mm〉
[
〈Mn−m〉 − 〈Mn−m−1〉

]
+

nσ2

2
. (31)

Expanding the right-hand side of equation (29) one can in principle compute 〈Mn〉. Using Kac’s
formula [45] for the mean maximum displacement, it was recently computed explicitly in [65]
to be

〈Mn〉 =
σ

2
√
π

n∑
j=1

Γ
( j+1

2

)
Γ
( j+2

2

) . (32)

Using this expression, we get

〈Mn−m〉 − 〈Mn−m−1〉 =
σ

2
√
π

Γ
(

n−m+1
2

)
Γ
(

n−m+2
2

) , n > 1. (33)

Finally inserting equations (32) and (33) in the expression of 〈M2
n〉 in equation (31) we get

〈M2
n〉 =

v2
0

2γ2

(
Sn

π
+ n

)
, n > 1, (34)
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where the quantity Sn is defined as

Sn =

√
π

σ

n−1∑
m=1

Γ
(

n−m+1
2

)
Γ
(

n−m+2
2

) 〈Mm〉. (35)

Inserting 〈Mm〉 from equation (32) in the above equation and simplifying, one gets the explicit
expression of Sn given in equation (6).

4.2. Computation of 〈Y2
k∗ 〉(n)

We now compute the other term 〈Y2
k∗ 〉(n) in the expression of the mean area in equation (21).

To calculate this, we first compute the joint distribution P(Y, k∗|n) = Prob.[Yk∗ = Y, k∗|n] and
then compute the second moment of the displacement Yk∗ of the particle along y direction at
step k∗ in which the particle reaches its maximum along the x direction in a walk of n-steps.
It is possible to show that one can compute this joint distribution for a general 2D discrete
time random walk where the position coordinates (Xi, Yi) at ith step evolve, starting from
X0 = 0, Y0 = 0, as Xi = Xi−1 + xi and Yi = Yi−1 + yi with the jump increments (xi, yi) at dif-
ferent steps drawn independently from the common distribution p(x, y). Note that at a given
step, the increments x and y can be correlated.

To proceed let us define marginal distribution of the y-increment

p2(y) =
∫ ∞

−∞
dx p(x, y), (36)

and the marginal distribution of the y-coordinate Yk of the walker at step k

P(Y, k) =
∫ ∞

−∞

∫ ∞

−∞
. . .

∫ ∞

−∞
dy1 dy2 . . . dykδ

(
Y −

k∑
i=1

yi

)
k∏

i=1

p2(yi). (37)

Now consider any trajectory in two dimensions up to n steps. Let k∗ denote the time at which
the x-coordinate achieves its maximum Mn and Yk∗ denote the y-coordinate exactly at step k∗.
Recall, we want to compute the joint distribution of Yk∗ and k∗, given the total number of steps
n, i.e., P(Y, k∗|n). We show that this joint distribution is given by

P(Y, k∗|n) = qk∗ qn−k∗P(Y, k∗), (38)

where P(Y, k∗) is defined in equation (37) and qn =
( 2n

n

)
2−2n is the Sparre Andersen survival

probability of a 1D random walk with arbitrary symmetric and continuous jump distribution
[69, 70].

To prove the claim in equation (38), we start with the joint probability distribution for
Mn = M, Yk∗ = Y and k∗ denoted by P(M, Y, k∗|n). This joint probability distribution of the
n-step walk can be expressed as a multi-dimensional integral

P(M, Y, k∗|n) =
∫

�dx �dyZk∗
(
M, Y, {xi}, {yi}

) n∏
j=1

p(x j, y j), (39)

with Zk∗
(
M, Y, {xi}, {yi}

)
defined as

Zk∗ (M, Y, {xi}, {yi}) =

⎡
⎣ n∏

j�=k∗, j=0

Θ(M − X j)

⎤
⎦ δ(M − Xk∗)δ(Y − Yk∗), (40)

9
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where Xi =
∑i

j=1x j and Yi =
∑i

j=1y j (recall we have chosen X0 = Y0 = 0). Here Θ(n) is
the Heaviside theta function. The function Zk∗

(
M, Y, {xi}, {yi}

)
ensures that Xk∗ = M and

Yk∗ = Y while all other {Xi} are smaller than M. Finally, we integrate over all {xi, yi}
with appropriate joint distribution

∏n
i=1 p(xi, yi). For simplicity, we have used the short-hand

notation �dx = dx1 dx2 . . . dxn and �dy = dy1 dy2 . . . dyn.
Since we are interested in the joint distribution P(Y, k∗|n) of Yk∗ = Y and k∗, we integrate

P(M, Y, k∗|n) in equation (39) over M i.e.

P(Y, k∗|n) =
∫ ∞

0
dM P(M, Y, k∗|n). (41)

To proceed further we take the Fourier transformation with respect to Y

P̄
(
ξ, k∗|n

)
=

∫ ∞

−∞
dY eiξY

∫ ∞

0
dM P(M, Y, k∗|n), (42)

and perform some algebraic simplications in equation (39). We relegate the details of the
calculations to appendix A and present only the final result here. The final expression reads

P̄
(
ξ, k∗|n

)
= qk∗qn−k∗ [p̂2(ξ)]k∗ , (43)

where p̂2(ξ) represents the Fourier transformation of the marginal distribution p2(y) of
y-increment (see equation (36)) and is defined by

p̂2(ξ) =
∫ ∞

−∞
dy eiξy p2(y). (44)

The term qn =
( 2n

n

)
2−2n in equation (43), as mentioned earlier, is the survival probability of a

random walker in one dimension starting from the origin and with jumps drawn independently
from a symmetric and continuous distribution. Note that the term [p̂2(ξ)]k∗ in equation (43) is
actually the Fourier transform of the marginal distribution P(Y, k∗) of the y-coordinate at step
k∗ as can be easily seen from equation (37). Hence, performing inverse Fourier transform on
both sides of equation (43) one arrives at the result in equation (38). Notice that the expression
of P(Y, k∗|n) in equation (38) appears naturally in the following form:

P(Y, k∗|n) = Prob.[Yk∗ = Y] × Prob.[Mn occursatstep k∗ in n − stepwalk]. (45)

This result is quite universal and holds true for any joint distribution p(x, y) as long as it is
symmetric and continuous in x. This universality is a consequence of Sparre Andersen theorem
[69, 70]. In addition if the joint distribution p(x, y) is such that 〈y2〉 is finite, one finds

〈Y2
k∗ 〉(n) =

n∑
k∗=1

〈Y2
k∗ 〉 × qk∗qn−k∗ (46)

= .

n∑
k∗=1

〈y2〉 k∗ qk∗qn−k∗ (47)

= 〈y2〉 n
2

, (48)

where we have used qk = 2−2k
( 2k

k

)
. Note that this result is also universal.

10
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Figure 2. Comparison of the mean area of the convex hull for a RTP in fixed-n ensemble
(left) and fixed-t ensemble (right) with the numerical simulations in the log–log scale.
The corresponding analytic expressions are given in equations (5) and (8) respectively.
For both panels, we have chosen v0 = 1, γ = 1.5.

Recall, in this paper, we are interested to compute 〈Y2
k∗ 〉(n) for the RTP in which case the

joint distribution p(x, y) is given in equation (24). For this distribution one has

p2(y) =
γ

πv0
K0

(
γ|y|
v0

)
, (49)

with 〈y2〉 = v2
0

γ2 which gives

〈Y2
k∗ 〉(n) =

v2
0

2γ2
n. (50)

4.3. Mean area 〈An〉

Substituting 〈Y2
k∗ 〉(n) from equation (50) along with 〈M2

n〉 from equation (34) in the expression
of 〈An〉 in equation (21), we obtain the mean area of the convex hull for a 2D isotropic run and
tumble motion in the fixed-n ensemble as quoted in equation (5). For large n, we find Sn  πn
(see appendix B for proof) which yields the asymptotic form of 〈An〉 in equation (5) as

〈An〉 
nπ
2
σ2, as n →∞. (51)

This matches with the mean area of the convex hull of a discrete two dimensional random
walk of n steps for any jump distribution with a finite variance σ2 [54]. In figure 2 (left panel),
we have compared our analytic result of 〈An〉 in equation (5) with the simulation results. We
observe an excellent agreement between them. A summary of the numerical scheme adopted
to construct the convex hull is provided in appendix C.

To compare the mean area for different parameters, we rescale 〈An〉 in equation (5) with
σ2 where σ = v0/γ. Moreover, from equation (51), we see that 〈An〉 scales linearly with n for

11
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Figure 3. Comparison of the mean area for fixed-n (left) and fixed-t (right) ensem-
bles with the numerical simulations. For fixed-n ensemble (left), we have denoted
αn = 2〈An〉/nπσ2 with σ = v0/γ and 〈An〉 given in equation (5). On the other hand,
for fixed-t ensemble (right), we have introduced the notation α(t) = 2〈A(t)〉/πγtσ2 with
〈A(t)〉 given in equation (8). For both panels, we have used v0 = 1.

n � 1. Therefore, we also rescale 〈An〉 with n to remove the asymptotic growth with respect
to n for proper visualisation. Defining

αn =
2〈An〉
nπσ2

, (52)

one expects αn to be independent of v0 and γ via equation (5). Also, αn should saturate to
the value 1 for n →∞. Indeed, in figure 3 (left panel), we observe that αn is identical for two
different values of γ, namely γ = 1 and γ = 0.5. Moreover, it approaches the value αn → 1
as we go to higher values of n. This comparison of αn for two different values of γ provides
another verification of 〈An〉 in equation (5).

5. Fixed-t ensemble

The previous section dealt with the mean area of the convex hull for a RTP in the fixed-n ensem-
ble. We now consider the mean area in the fixed-t ensemble where the observation time t is fixed
but the number of runs n varies from sample to sample. For this case also, we show that the run
and tumble model can be suitably mapped to a random walker in two dimensions which is then
used to calculate exactly the mean area 〈A(t)〉 via equation (22). To begin with, let us consider
a realisation of the RTP with n runs where the ith run lasts for time τ i with position increments
xi and yi. Since at the end of each run except the nth one, the RTP encounters a tumbling, the
times {τ i}for 1 � i � (n − 1) are all drawn independently from the exponential distribution
ρ(τi) = γ e−γτi . Therefore the joint distribution p(xi, yi, τ i) with 1 � i � (n − 1) is given by
equation (23). On the other hand, during the last interval τ n, the RTP does not encounter any
tumble: the probability of which is e−γτn . Hence, the corresponding joint distribution is

plast(xn, yn, τn) =
e−γτn

π
δ(v2

0τ
2
n − x2

n − y2
n) =

1
γ

p(xn, yn, τn), (53)

12
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where p(xn, yn, τ n) is given by equation (23). We emphasise that unlike in the fixed-n case, here
the runs are correlated due to the constraint of fixed t. To see this more clearly, we write the
grand joint distribution of {xi}, {yi} and n below:

P
(
{xi}, {yi}, n|t

)
=

∫ t

0
dτ1

∫ t

0
dτ2 . . . .

∫ t

0
dτn

1
γ

[
n∏

i=1

p(xi, yi, τi)

]
δ

(
n∑

i=1

τi − t

)
. (54)

To get rid of the δ-function, we take the Laplace transformation with respect to t (→ s)

∫ ∞

0
dt e−st P

(
{xi}, {yi}, n|t

)
=

1
γ

⎡
⎣ n∏

i=1

γ exp
(
− (γ+s)

v

√
x2

i + y2
i

)
2πv0

√
x2

i + y2
i

⎤
⎦ , (55)

which we rewrite as∫ ∞

0
dt e−st P

(
{xi}, {yi}, n|t

)
=

1
γ

(
γ

γ + s

)n
[

n∏
i=1

gs(xi, yi)

]
, (56)

with gs(x, y) =
(γ + s) exp

(
− (γ+s)

v

√
x2

i + y2
i

)
2πv0

√
x2 + y2

. (57)

Finally, inverting the Laplace transform in equation (56), the grand joint distribution
P
(
{xi}, {yi}, n|t

)
can be formally written as

P
(
{xi}, {yi}, n|t

)
=

∫
Γ

ds
2πi

est 1
γ

(
γ

γ + s

)n
[

n∏
i=1

gs(xi, yi)

]
, (58)

where Γ is the Bromwich contour in the complex s plane. Like in the fixed-n ensemble, here
also, we find that the jump distributions in equation (58), although correlated, are isotropic
which enables us to use the Cauchy’s formula for the mean area in equation (22). For this,
we first note that the function gs(x, y) given in equation (57) can be interpreted as a probabil-
ity distribution as it is positive over full (x, y) plane and normalised to unity. As a result the
term inside the square bracket in the integrand of the equation (58) can be interpreted as the
joint distribution of the increments xi and yi of a random walker in two dimension in steps
i = 1, 2, . . . , n. In the context of RTP such mapping to random walk problem was observed
earlier [35, 65] and exploited to study the survival probability in higher dimension [35]. In this
paper we follow a similar calculation using this mapping and compute the mean area 〈A(t)〉
of the convex hull by employing the formula in equation (22). As seen in this formula, we
then need to calculate 〈M2(t)〉 and 〈Y(tm)2〉(t). In the following, we use the joint distribution
P
(
{xi}, {yi}, n|t

)
in equation (58) to calculate these two quantities explicitly.

5.1. Computation of 〈M2(t)〉

Let us begin with the computation of 〈M2(t)〉 where M(t) is the maximum of the x-coordinate
of the RTP up to observation time t. For this, we need to compute the statistics of the maximum
of a 1D random walker for fixed t with n jumps in the x-coordinate: {xi} for i = 1, 2, . . . , n.
The joint distribution of the increments {xi} can be obtained by integrating P

(
{xi}, {yi}, n|t

)
in equation (58) over all {yi} as

13
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Px

(
{xi}, n|t

)
=

∫ ∞

−∞
dy1 dy2 . . . dyn P

(
{xi}, {yi}, n|t

)
, (59)

=

∫
Γ

ds
2πi

est 1
γ

(
γ

γ + s

)n
[

n∏
i=1

gs(xi)

]
, (60)

with gs(x) =
∫ ∞

−∞
dy gs(x, y) =

(γ + s)
πv0

K0

(
(γ + s)|x|

v0

)
. (61)

Using this expression of Px

(
{xi}, n|t

)
, we now proceed to calculate the statistics of the max-

imum M(t). To this end, we define Q(M, n|t) as the probability that Xi < M for 1 � i � n,
where Xi =

∑i
j=1x j. It is easy to realise that Q(M, n|t) is actually the survival probability that

the walker with n steps up to time t has not crossed X = M. Formally, this is given as

Q(M, n|t) =
∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn Prob.

[
X1 < M, X2 < M, . . . , Xn < M, n|t

]
, (62)

=

∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn Θ(M − X1) . . .Θ(M − Xn)Px

(
{xi}, n|t

)
. (63)

Note that Q(M, n|t) is also the probability that the maximum displacement of the 1D random
walk with n steps up to time t is less than or equal to M. Differentiating Q(M, n|t) with M gives
the joint probability distribution for M and n which can then be used to calculate 〈M2(t)〉. The
formal expression of 〈M2(t)〉 reads

〈M2(t)〉 =
∞∑

n=1

∫ ∞

0
dM M2∂MQ(M, n|t), (64)

=

∫
Γ

ds
2πi

est 1
γ

(
γ

γ + s

)n

〈M2
s (n)〉, (65)

where 〈M2
s (n)〉 is

〈M2
s (n)〉 =

∫ ∞

0
dM M2∂MQs(M, n), with (66)

Qs(M, n) =
∫ ∞

−∞
dx1 . . .

∫ ∞

−∞
dxn Θ(M − X1) . . .Θ(M − Xn)

[
n∏

i=1

gs(xi)

]
. (67)

Here
∫∞
−∞dx gs(x) = 1 which can be verified easily from equation (61). Hence Qs(M, n) can be

deciphered as the cumulative distribution that the maximum is less than M up to n steps for an
auxilliary 1D random walk with identical and independent jumps which follow the symmetric
and continuous distribution gs(x) given in equation (61). Consequently, 〈M2

s (n)〉 is the second
moment of the maximum Ms(n) of the auxillary random walk which can be calculated using
the Pollaczek Spitzer formulae in equations (29) and (30) as done for the fixed-n ensemble.
To avoid repetition, we present the details of this calculation in appendix D and write only the
final expression of 〈M2

s (n)〉 here which reads

〈M2
s (n)〉 = v2

0

2(γ + s)2

(
Sn

π
+ n

)
, (68)

14
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where Sn is given in equation (6). Substituting 〈M2
s (n)〉 in the expression of 〈M2(t)〉 in

equation (65) and performing the inverse Laplace transformation gives

〈M2(t)〉 = v2
0

2γ2

[
e−γt − 1 + γt +

e−γt

π

∞∑
n=1

Sn

Γ(n + 2)
(γt)n+1

]
. (69)

5.2. Computation of 〈Y(tm)2〉(t)

We next calculate 〈Y(tm)2〉(t) for the mean area 〈A(t)〉 in equation (22). Recall that Y(tm|t) is
the y-coordinate of the RTP at time tm when the maximum M(t) of the x-coordinate is attained
in a trajectory of duration t. To calculate 〈Y(tm)2〉(t), we first notice that the maximum in the
x-direction occurs at the end of some complete jump step, say k∗ which is a function of the
total number of jumps n occurring in time t. Of course the number of jumps n is a random
quantity and consequently so is k∗ as they change from realisation to realisation and also
they are functions of t. Hence denoting the time at the end of step k∗ by tm, we can write
Y(tm) =

∑k∗
i=1yi.

We start with the grand joint distribution P({xi}, {yi}, n|t) given in equation (58). As we
have mentioned earlier, the term

∏n
i=1gs(xi, yi) inside the square bracket on the right-hand side

of this equation can be interpreted as the joint probability distribution of the jumps xi and yi for
i = 1, 2, . . . , n of a random walk in two dimension of n steps. Once again we emphasise that
gs(x, y), given explicitly in equation (57), can be interpreted as an effective joint distribution of
elementary jumps along x and y directions, similar to p(x, y) as considered earlier in section 4
except now it is parametrised by s. As a result we see that for a given trajectory of duration
t containing n jump steps there is a trajectory of n jumps generated by the joint distribution∏n

i=1gs(xi, yi). Hence, if the maximum displacement in the x-direction occurs at step k∗ of a
trajectory of duration t containing n jump steps, then in the auxiliary random walk problem
generated by gs(x, y) the maximum displacement along x-direction occurs at the same step k∗.
Moreover the displacements Xi and Yi (starting from the origin) along x and y-directions at ith
step are exactly same for i = 1, 2, . . . , n. Hence, we have

〈Y(tm)2〉(t) =
∫
Γ

ds
2πi

est 1
γ

∞∑
n=1

(
γ

γ + s

)n

〈Y2
k∗ 〉s(n), (70)

where 〈Y2
k∗ 〉s(n) should be computed following the procedure given in section 4.2 with only dif-

ference being the joint distribution p(x, y) is replaced by gs(x, y) which is given in equation (57).
That is why we now have a subscript s in the notation of 〈Y2

k∗ 〉s(n). Executing the computation
steps from equations (46)–(48) with gs(x, y) we get

〈Y2
k∗ 〉s(n) =

v2
0

(γ + s)2

n
2

, (71)

where we have used 〈y2〉gs =
∫∞
−∞dx

∫∞
−∞dy y2 gs(x, y) =

v2
0

(γ+s)2 . Inserting the above expression
from equation (71) in equation (70) and carrying out the sum over n we get

〈Y(tm)2〉(t) = v2
0

2

∫
Γ

ds
2πi

est

s2(γ + s)
, (72)
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which upon performing inverse Laplace transformation with respect to s gives the final
expression

〈Y(tm)2〉(t) = v2
0

2γ2

(
γt − 1 + e−γt

)
. (73)

5.3. Mean area for fixed-t ensemble

The expressions of 〈M2(t)〉 and 〈Y(tm)2〉(t) in equations (69) and (73) respectively guide us to
write the mean area 〈A(t)〉 via equation (22). Inserting these forms explicitly, it is straightfor-
ward to show that 〈A(t)〉 indeed possesses the scaling form of equation (8) with the scaling
function J (w) given in equation (9). In figure 2 (right panel), we have plotted 〈A(t)〉 and
compared it against the numerical simulations. We observe an excellent agreement.

To get the Brownian limit of the expression of 〈A(t)〉 in equation (8), we look at the
asymptotic behaviours of the scaling function J (w) which read

J (w)  w3

3π
+ O(w4), as w→ 0, (74)

 πw + O(
√
w), as w →∞. (75)

Inserting these forms in equation (8), we find that 〈A(t)〉 exhibits a crossover from ∼t3

scaling for t � γ−1 to ∼t scaling for t � γ−1:

〈A(t)〉  γv2
0t3

6π
+ O(t4), for t � γ−1 (76)

 πv2
0

2γ
t + O(

√
t), for t � γ−1. (77)

For t � γ−1, we recover the result for Brownian motion with effective diffusion constant
D = v2

0/2γ. The large-t behaviour of 〈A(t)〉 in equation (77) can also be understood from the
large-n behaviour of 〈An〉 in equation (5). For large t, the number of tumbling events experi-
enced by the particle typically scales with time as n  γt. Plugging this in equation (5) directly
yields the asymptotic form in equation (13). However, our study goes beyond this asymptotic
behaviour and also gives the mean area for small and intermediate values of t and n where
the effect of activity is strong. At small times t � γ−1, the behaviour is remarkably differ-
ent than that of the Brownian motion as illustrated by the ∼t3 growth in equation (76). To
understand this cubic growth, we proceed as follows. Recall that the particle typically takes
time τ tum of order ∼ γ−1 to experience a tumble. However, the value of τ tum fluctuates from
realisation to realisation. In fact, for some realisation, it can be quite smaller than γ−1 (the dis-
tribution of τ tum is p(τtum) = γ e−γτtum which is peaked at τ tum = 0). The cubic growth of the
mean area at smaller timescales arises essentially from those trajectories for which one also
has τ tum � γ−1. The minimum number of tumbling required to construct a convex hull is two
up to time t (counting the starting point as a tumble). Then, the convex hull is essentially a
triangle with two sides of length v0τ and v0(t − τ ) and some angle ζ between them. The area

is given by A(t) = | v
2
0τ (t−τ ) sin ζ

2 |. To calculate mean, we recall that τ is drawn from the expo-
nential distribution p(τ ) = γ e−γτ and the angle ζ is chosen uniformly from [0, 2π]. Although
at large times, 〈A(t)〉 behaves identical to that of the Brownian motion, the short time behaviour
is rather different. Another way to demonstrate this difference is to define
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Figure 4. (Left) Simulation results for the distribution of the area An for fixed-n ensem-
ble for different values of n. We have rescaled the distribution with mean area 〈An〉 and
compared it with that of the Brownian motion. We have chosen v0 = 1 and γ = 1 for all
values of n. (Right) The same analysis is conducted for the fixed-t ensemble with same
choice of parameters.

α(t) =
2〈A(t)〉
γtπσ2

. (78)

For t →∞, α(t) saturates to the value 1. In figure 3 (right panel), we have plotted α(t) for
two different values of γ and also compared them against the numerical simulations. We see
agreement of the numerical data to the analytic expressions for both cases. Also, we obtain that
α(t) approaches the value 1 in both cases.

6. Numerical study of the probability distribution

In the previous sections, we explicitly derived the exact analytical expressions of the mean area
of the convex hull in the fixed-n and fixed-t ensembles and compared them against the numer-
ical simulations. These expressions are given respectively in equations (5) and (8). We now
investigate the probability distribution of the area of the convex hull for a single RTP. Deriv-
ing analytic forms of the distribution seems a difficult problem. In view of this, we perform
a rigorous numerical study for the distribution in the two statistical ensembles. Here, we only
look at the distribution corresponding to the typical fluctuations in area. By this, we mean the
parts of distribution that lie within few standard deviations around the mean. To compare the
distribution for different values of n or t, it turns out useful to rescale it with the mean area.
In figure 4, we have illustrated the simulation data for the rescaled distribution for different
values of n and t. For both ensembles, we find that the distribution converges to that of the
Brownian motion in the asymptotic regime, i.e. n � 1 for fixed-n ensemble and t � γ−1 for
fixed-t ensemble. However, for other (small and intermediate) values of n and t, we expectedly
see clear departure from the Brownian motion as elucidated by blue symbols in both panels of
figure 4. We refer to appendix C for a discussion on the numerical scheme for constructing the
histograms in figure 4.
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Figure 5. Simulation data for the variance of area for fixed-n (left) and fixed-t (right)
ensembles. For fixed-n ensemble (left), we have plotted βn = Var(An)/n2σ4 vs n and for
fixed-t ensemble (right), we have plotted β(t) = Var(A(t))/(γt)2σ4 vs t. Parameters used
in these plots are v0 = 1, γ = 1 (green) and γ = 0.5 (red) for both panels.

Similarly, we have also studied the variance of the area in figure 5 for two ensembles. As
done for the mean area in equations (52) and (78), we define the following two quantities:

βn =
Var(An)

n2σ4
, for fixed-n (79)

β(t) =
Var(A(t))
(γt)2σ4

. for fixed-t. (80)

As seen before, this rescaling of the variance helps in better visualisation of the data since all of
them converge to the same value in the asymptotic regime for both ensembles and for different
values of the parameters. For both ensembles, we see in figure 5 that βn and β(t) tend towards
the same value for different values of γ.

7. Conclusion

We have investigated the area of the convex hull of a RTP in two dimensions. We have consid-
ered this problem in two different ensembles: (i) fixed-n ensemble and (ii) fixed-t ensemble.
We have obtained explicit expressions of the mean area 〈An〉 and 〈A(t)〉 in these two ensembles
and verified them numerically. To study mean area analytically, we have used a mapping of
the run-and-tumble motion to a random walk model in two dimensions similar to what was
used previously in [35]. After exploiting the connection between the extreme value statistics
and the computation of the mean area through Cauchy’s formulae (equations (21) and (22)),
we use this mapping to employ the Sparre Andersen theorem which finally leads us to arrive
at the explicit expressions of the mean area in equations (5) to (9). We observed that at large
times the mean area grows linearly whereas at small times it grows as ∼t3 with t. We have
obtained a scaling function that describes this crossover from the cubic growth to the linear
growth around the natural time scale γ−1 provided by the tumbling rate.

Obtaining analytical results for the higher order moments and the distribution seems a chal-
lenging task. We have numerically studied the variance of the mean area as a function of time
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(number of tumbles n in the fixed run ensemble and t in the fixed time ensemble) and found
that it grows quadratically with time at long times. We have also studied the distribution of
the area numerically. While in the asymptotic regime, i.e. n � 1 for the fixed-n ensemble and
t � γ−1 for the fixed-t ensemble, the distribution converges to that of the Brownian motion
when area is scaled with its mean, we find a clear difference at small or intermediate regimes.

As mentioned before, computing the higher order moments and the full distribution of the
area is a challenging problem and still remains an open problem even for a Brownian par-
ticle. We believe that our work may have potential biological applications in estimating the
spatial extent over which bacteria like E. Coli move, since they exhibit run and tumble dynam-
ics [19]. However, here, we have looked at the simple version of this model where tumbles
are instantaneous. On the other hand, it has been experimentally found that active particles
in reality spend small but non-zero time while tumbling [19, 71]. For fixed-n case, we expect
the results in these realistic systems with non-instantaneous tumblings to be same as the sim-
ple model (with instantaneous tumblings) considered in our work. However, for fixed-t case,
the results will be different atleast when the tumbling timescale is comparable to or larger
than the run timescale. Extending our results for these realistic systems remains a promising
future direction. Finally, in this work, we have focused on one class of the active particles
called RTPs. It would be interesting to explore how our results get generalised for other mod-
els of the active particles like active Brownian particle and active Ornstein–Uhlenbeck particle
[3, 72].
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Appendix A. Derivation of P̄ (ξ, k∗|n) in equation (43)

In this appendix we derive the expression of P̄
(
ξ, k∗|n

)
given in equation (43). To begin

with, we start with the joint distribution P(M, Y, k∗|n) in equation (39). Performing Fourier
transform with respect to Y , one can write P̄

(
ξ, k∗|n

)
defined in equation (42) as

P̄
(
ξ, k∗|n

)
=

∫ ∞

0
dM Ileft(M, ξ, k∗)Iright(M, k∗, n), (A.1)

where we have defined

Iright(M, k∗, n) =
∫ N∏

i=k∗+1

dyi dxi p(xi, yi)Θ

⎛
⎝M −

i∑
j=1

x j

⎞
⎠ , (A.2)
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and

Ileft(M, ξ, k∗) =
∫ k∗∏

i=1

dxi p̃(xi, ξ)
k∗−1∏
i=1

Θ

⎛
⎝M −

i∑
j=1

x j

⎞
⎠ δ

⎛
⎝M −

k∗∑
j=1

x j

⎞
⎠ , (A.3)

with the definition

p̃(x, ξ) =
∫ ∞

−∞
dy eiξy p(x, y). (A.4)

Let us first consider the integral Iright(M, k∗, n) defined in equation (A.2). Since,

Xk∗+ j = x1 + x2 + · · ·+ xk∗ + xk∗+1 + · · ·+ xk∗+ j = M + xk∗+1 + · · ·+ xk∗+ j (A.5)

upon using M =
∑k∗

i=1xi, we can re-write equation (A.2) as

Iright(M, k∗, n) =
∫ [ n∏

i=k∗+1

dxi p1(xi)

]
n∏

i=k∗+1

Θ

⎛
⎝−

i∑
j=k∗+1

x j

⎞
⎠ , (A.6)

where p1(x) =
∫∞
−∞ p(x, y) dy is a normalized (to unity) probability density function for the

increment in the x-direction. However, the integral in equation (A.6) is simply the probability
that a random walk in one dimension (in the x-direction) starting at the origin, with independent
and identically distributed increment xi’s drawn from p1(xi), stays below the origin up to step
n − k∗. This is precisely given by qn−k∗ via the Sparre Andersen theorem (independently of the
jump distribution pi(x), where qn =

( 2n
n

)
2−2n. Hence, we have

Iright(M, k∗, n) = qn−k∗ . (A.7)

Note that the integral Iright(M, k∗, n) does not depend on M, but only on (n − k∗).
We now turn to the left integral Ileft(M, ξ, k∗) in equation (A.3). Let us first re-write p̃(x, ξ)

in equation (A.4) in a different way. Let us first consider the integral

∫ ∞

−∞
dx p̃(x, ξ) =

∫ ∞

−∞
dx
∫ ∞

−∞
dy p(x, y) eiξy =

∫ ∞

−∞
dy p2(y)eiξy = p̃2(ξ), (A.8)

where p2(y) =
∫∞
−∞dx p(x, y) is the marginal distribution for the y-increment. Now, let us re-

write

p̃(x, ξ) =
p̃(x, ξ)∫∞

−∞dx p̃(x, ξ)
× p̃2(ξ) = f (x, ξ) p̃2(ξ), (A.9)

where we used the identity in equation (A.8) and

f (x, ξ) =
p̃(x, ξ)∫∞

−∞dx p̃(x, ξ)
. (A.10)

Note that f (x, ξ) is normalized to unity (when integrated over x) and can be thought of as an
effective jump distribution in the x direction that is just parametrized by ξ assuming it is positive
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for all x. We use this expression of p̃(x, ξ) from equation (A.9) into the integral expression for
Ileft(M, ξ, k∗) in equation (A.3), to get

Ileft(M, ξ, k∗) = [ p̃2(ξ)]k∗
∫ k∗∏

i=1

dxi f (xi, ξ)
k∗−1∏
i=1

Θ

⎛
⎝M −

i∑
j=1

x j

⎞
⎠ δ ×

⎛
⎝M −

k∗∑
j=1

x j

⎞
⎠ .

(A.11)

Now, substituting this expression and the result in equation (A.7) on the right-hand side of
equation (A.1) and carrying out the integral over M gives

P̃(ξ, k∗|n) = qn−k∗[ p̃2(ξ)]k∗
∫ [ k∗∏

i=1

dxi f (xi, ξ)

]
k∗∏

i=1

Θ

⎛
⎝ i∑

j=1

xk∗+1− j

⎞
⎠ (A.12)

However, we immediately identify the k∗-fold integral in equation (A.12) as the probability
that a one dimensional random walker, starting at the origin and with jump distribution drawn
from f (x, ξ) (which is normalised to unity), stays above the origin up to k∗ steps. By Sparre
Andersen theorem, this is universal and is simply qk∗ and is independent of f (x, ξ), and in
particular then does not depend on ξ. Hence we finally have

P̃(ξ, k∗|n) =
∫ ∞

∞
P(Y, k∗|n) eiξY dY = qk∗ qn−k∗ [ p̃2(ξ)]k∗ , (A.13)

which upon Fourier inversion, yields the result in equation (38). This result is true for arbitrary
joint distribution p(x, y) as long as it is symmetric and continuous in x.

Appendix B. Proof Sn  πn as n →∞

In this appendix, we derive the asymptotic form of Sn for large n which was used to obtain the
large n behaviour of 〈An〉 in equation (51). To this end, we consider the expression of Sn in
equation (35) and change the variable m = zn to yield

Sn =

√
π

σ

(n−1)/n∑
z=1/n

Γ
(

n(1−z)+1
2

)
Γ
(

n(1−z)+2
2

) 〈Mnz〉. (B.1)

Note that z ∈ { 1
n , 2

n , . . . , n−1
n }. For large n, we change the summation in equation (B.1) to

integration as
∑(n−1)/n

z=1/n → n
∫ 1

0 dz and rewrite it as

Sn 
√
π

σ
n
∫ 1

0
dz
Γ
(

n(1−z)+1
2

)
Γ
(

n(1−z)+2
2

) 〈Mnz〉, as n →∞. (B.2)

We next use the result of [65] to write 〈Mnz〉 for large n as 〈Mnz〉  σ
√

2zn
π . In addition, we

approximate
Γ
(

n(1−z)+1
2

)

Γ
(

n(1−z)+2
2

) 
√

2
n(1−z) as n →∞. Inserting these forms in equation (B.2) and

performing the integration over z, we get

Sn  πn, as n →∞. (B.3)
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Appendix C. Details of the numerical simulation for constructing convex hull

To construct convex hull numerically, we first generate a trajectory of the RTP depending on
the choice of ensemble. For fixed-n ensemble, the particle undergoes a fixed number of runs
(say n) and we stop the process after n runs have taken place. On the other hand, for fixed-t
ensemble, we stop the system when the observation time t is reached. Given this trajectory, we
construct the convex hull using the Andrew’s monotone chain algorithm [73] which is further
expedited with Akl’s heuristic [74]. Then, to calculate the area, we denote the m vertices of the
convex hull as {X̄i, Ȳ i}, 1 � i � m in order of their Cartesian coordinates and use

A =
1
2

m−1∑
i=0

(
Ȳi + Ȳi+1

) (
X̄i − X̄i+1

)
, (C.1)

with (X̄0, Ȳ0) = (X̄m, Ȳm). This procedure is then repeated for R number of realisations to finally
construct the histogram or average of A. We have taken R = 105 for constructing the histogram
and R = 105 to compute the mean.

Appendix D. Derivation of 〈M2
s(n)〉 in equation (68)

Here, we show that the expression of 〈M2
s (n)〉 in equation (68) can be derived using the Pol-

laczek–Spitzer formula in equation (26). We first recall that Qs(M, n) in equation (66) repre-
sents the cumulative distribution that the maximum is less than M up to n steps for a random
walker with independent and identically distributed increments {xi} chosen from the symmet-
ric and continous distribution gs(xi) in equation (61). For this, the Pollaczek–Spitzer formula
gives [46, 67]

∞∑
n=0

zn〈e−λMs(n)〉 =
∞∑

n=0

zn
∫ ∞

0
dM e−λMQ′

s(M, n) =
φs(z,λ)√

1 − z
, (D.1)

where 0 � z � 1 and λ � 0 and the function φs(z,λ) is defined as

φs(z,λ) = exp

(
−λ

π

∫ ∞

0
dξ

ln(1 − zp̂s(ξ))
λ2 + ξ2

)
, with (D.2)

p̂s(ξ) =
∫ ∞

−∞
dx eiξxgs(x) =

1√
1 + ξ2σ2

s

. (D.3)

Here σs = v0/(γ + s). As seen for fixed-n ensemble in equations (29) and (30), one can extend
this formula to determine the generating function for the moments [54, 69]. For this case,
one gets

h(1)
s (z) =

∞∑
n=0

zn〈Ms(n)〉 = 1
π(1 − z)

∫ ∞

0

dξ
ξ2

ln

(
1 − zp̂s(ξ)

1 − z

)
, (D.4)

h(2)
s (z) =

∞∑
n=0

zn〈M2
s (n)〉 = (1 − z)

[
h(1)

s (z)
]2

+
σ2

s z
2(1 − z)2

. (D.5)
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Taking derivative of h(2)
s (z) n-times, we get

〈M2
s (n)〉 =

n−1∑
m=1

〈Ms(n)〉
[
〈Ms(n − m)〉 − 〈Ms(n − m − 1)〉

]
+

nσ2
s

2
. (D.6)

We next use the results of [65] to write 〈Ms(n)〉 as

〈Ms(n)〉 = σs

2
√
π

n∑
j=1

Γ
(

j+1
2

)
Γ
( j+2

2

) , (D.7)

and using this, we get

〈Ms(n − m)〉 − 〈Ms(n − m − 1)〉 = σs

2
√
π

Γ
(

n−m+1
2

)
Γ
(

n−m+2
2

) . (D.8)

Finally, we insert equations (D.7) and (D.8) in the expression of 〈M2
s (n)〉 in equation (D.6) and

perform the sum over m explicitly to yield

〈M2
s (n)〉 = σ2

s

2

(
Sn

π
+ n

)
, (D.9)

where Sn is given in equation (6). Identifying σs = v0/(γ + s), we recover the result in
equation (68).
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