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Travelling Salesperson Problem
Given a set of cities V and their pairwise distances cij , what is the
shortest tour visiting all cities and returning to the start?

from Dantzig, Fulkerson, Johnson, Journal of the Operations Reasearch Society of

America, 1954, 42 cities
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Travelling Salesperson Problem
Given a set of cities V and their pairwise distances cij , what is the
shortest tour visiting all cities and returning to the start?

from Applegate, Bixby, Chvátal, Cook, 2001, 15112 cities

3/19 Hendrik Schawe LP by Example: The Travelling Salesperson Problem



Travelling Salesperson Problem
Given a set of cities V and their pairwise distances cij , what is the
shortest tour visiting all cities and returning to the start?

from Bosh, Herman, 2004, 100000 cities (not optimal, tour from 2009)
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Travelling Salesperson Problem

I symmetric TSP
I cab = cba

I metric TSP
I triangle inequality cab + cbc ≥ cac

I Euclidean TSP
I cij from Euclidean metric
I polynomial-time approximation scheme (PTAS) exists1

I but still NP-hard2

I Used for
I vehicles
I circuit board drills
I testbed for metaheuristics (Simulated Annealing3, Taboo

Search4, Ant Colony5 and more)

1Arora, JACM, 1998 2Papadimitriou, Theo. Comp. Science, 1977 3Kirkpatrick et al.,
science, 1983 4Glover, Comp. and OR, 1986 5Dorigo et al., Evo Comp IEEE, 1997
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NP{,-complete,-hard}

I P
I decision problem
I solvable in polynomial-time
I e.g. “Is x prime?”

I NP
I decision problem
I verifiable in polynomial-time
I e.g. “Is x composite?”

I NP-hard
I any problem in NP can be reduced to

one in NP-hard
I e.g. TSP, Spinglass Groundstates

I NP-complete
I is the intersection of NP and NP-hard
I e.g. SAT, Vertex Cover, TSP-decision

NP

NP-hard

P

NP-complete

if P 6= NP
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Simple Heuristics

I Nearest Neighbor Heurist

I Greedy Heuristic

I Insertion Heuristics

I k-Opt Heuristics

→ Visualization: tspView
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Simple Heuristics

I Nearest Neighbor Heurist

I Greedy Heuristic

I Insertion Heuristics

I k-Opt Heuristics

How to judge if a solution is good, i.e., near the optimum?
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Linear Programming

maximize cTx

subject to Ax ≤ b.
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Linear Programming

maximize cTx

subject to Ax ≤ b.

I works outside the space of feasible solutions

I polynomial time
I can be used for combinatorial (integer) problems

I is not always a valid solution
I result valid → result optimal
I yields at least a lower bound
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TSP as LP

let xij be the edge between cities i and j
xij = 1 if i and j are consecutive in the tour else 0
cij = dist(i, j) is the distance between city i and j

minimize
∑
i

∑
j<i

cijxij

for example

xij =


· 1 0 0 1
1 · 0 1 0
0 0 · 1 1
0 1 1 · 0
1 0 1 0 ·


is the cyclic tour (1, 2, 4, 3, 5)
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Constraints
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Constraints

∑
j

xij = 2 ∀i ∈ V

I every city needs 2 ways
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Constraints

∑
j

xij = 2 ∀i ∈ V

I every city needs 2 ways

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V

I kills subtours/loops

I kills some fractional
solutions

I global min-cut to find
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Constraints

minimize
∑
i

∑
j<i

cijxij

subject to xij ∈ Z∑
j

xij = 2 i = 1, 2, ..., N

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V, S 6= ∅, S 6= V (SEC)

H xij are restricted to integer
I relax/ignore this and cope with it later

H ∀S ⊂ V are exponentially many
I add only violated

Dantzig, Fulkerson, Johnson, J. Oper. Res. Soc. Am., 2 (1954) 393

10/19 Hendrik Schawe LP by Example: The Travelling Salesperson Problem



Integer Programming and Cutting Planes

maximize x1 + x2

xi ∈ R

I Branch and Bound
I “clever backtracking”

I Cutting Planes
I add constraint
I invalidate relaxed

optimum
I all feasible solutions

stay feasible
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Visualization of some Examples

→ Visualization: tspView
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Generating a solution from a LP relaxation

I more sophisticated cutting planes
I Blossom inequalities
I Comb inequalities
I ...

I Branch-and-Bound or Branch-and-Cut
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Current Research in Statistical Physics

Phase transitions in optimization problems

Are there solvable → not solvable transitions?

Are there easy → hard transitions?

LP-relaxation is integer → obtainable in polynomial-time → easy
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Tunable Ensemble
Ensemble of disordered circles driven by the parameter σ

1. N cities on a circle
with R = N/2π

2. displace cities
randomly

r

φ

r ∈ U [0, σ], φ ∈ U [0, 2π)

3. optimize the tour

Is there a phase transition easy circle → hard realization?
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 0
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 10
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 20
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 40
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 80
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FCE Examples, N = 1024, R = 1024/2π ≈ 160

σ = 160
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Performance of the heuristics

I easy for small σ

I LP gives a very tight lower bound
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Solution probability p

Probability p that the SEC-relaxation is integer
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Solution probability p

Probability p that the SEC-relaxation is integer
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Take-home message

If you have a optimization problem and need to know the quality of
your heuristic solution:

⇒ Consider linear programming.
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Thank you for listening

What’s the complexity class of the best linear programming cutting-plane techniques?
I couldn’t find it anywhere. Man, the Garfield guy doesn’t have these problems ...

CC BY-NC Randall Munroe http://xkcd.com/399/
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Stör-Wagner Global Minimum Cut7

I O(|V ||E|+ |V |2 log |V |)

1. find an arbitrary s-t-min-cut

2. merge s and t

3. repeat until one vertex is left

4. smallest encountered s-t-min-cut is global min-cut

7M. Stör and F. Wagner, JACM, 1997
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Blossom Inequalities

k∑
m=0

∑
i∈Sm,j /∈Sm

xij ≥ 3k + 1

k odd

Si ∩ Sj = ∅ ∀i, j ∈ {1, . . . , k}
S0 ∩ Si 6= ∅ ∀i ∈ {1, . . . , k}
Si \ S0 6= ∅ ∀i ∈ {1, . . . , k}
|Si| = 2 ∀i ∈ {1, . . . , k}
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Blossom Inequalities

k∑
m=0

∑
i∈Sm,j /∈Sm

xij ≥ 3k + 1

S1

S2

S3

S4
S5

S0
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Blossom Inequalities
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First Excitation: The Second Shortest Tour

Uniformly distributed cities in high dimensions 2 ≤ D ≤ 312.
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Runtime Measurements
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Structural Properties

Those measurements are surely method dependent.
→ search for “physical” properties of the optimal tours

I solve them by branch-and-cut
I only possible for fairly small instances

I do structural properties change at the transition points?
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Tour Difference d

I Distance of two tours.
I Number of edges in the

first tour, but not in the
second.

I ∼ Hamming Distance

I normalized by N

On the right: d(x◦ij , x
∗
ij),

i.e. difference between inital
circle and optimal tour.
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Tortuosity

τ =
n− 1

L

n∑
i=1

(
Li
Si
− 1

)

τ = 0 τ = 0

τ ≈ 1.3 τ ≈ 2.4 τ ≈ 4.1
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Tortuosity
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Tortuosity
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Tortuosity
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Universality

Same analysis with other ensembles (Gaussian displacement,
displacement in three dimensions, some blossom inequalities)

σc b

Degree relaxation σlpc = 0.51(4) blp = 0.29(6)

SEC relaxation σcpc = 1.07(5) bcp = 0.43(3)
στc = 1.06(23) –

σcp,gc = 0.47(3) bcp,g = 0.45(5)
στ,gc = 0.44(8) –

σcp,3c = 1.18(8) bcp,3 = 0.40(4)

fast Blossom rel. σfbc = 1.47(8) bfb = 0.40(3)
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