

Linear Programming by Example: The Travelling Salesperson Problem

Hendrik Schawe

November 11, 2016

Travelling Salesperson Problem Simple Heuristics

Linear Programming Integer Programming and Cutting Planes

Current Research

Given a set of cities V and their pairwise distances c_{ij} , what is the shortest tour visiting all cities and returning to the start?

from Dantzig, Fulkerson, Johnson, Journal of the Operations Reasearch Society of America, 1954, 42 cities

Given a set of cities V and their pairwise distances c_{ij} , what is the shortest tour visiting all cities and returning to the start?

from Applegate, Bixby, Chvátal, Cook, 2001, 15112 cities

Given a set of cities V and their pairwise distances c_{ij} , what is the shortest tour visiting all cities and returning to the start?

from Bosh, Herman, 2004, 100000 cities (not optimal, tour from 2009)

- symmetric TSP
 - $\blacktriangleright \ c_{ab} = c_{ba}$
- metric TSP
 - triangle inequality $c_{ab} + c_{bc} \ge c_{ac}$
- Euclidean TSP
 - c_{ij} from Euclidean metric
 - polynomial-time approximation scheme (PTAS) exists¹
 - but still NP-hard²
- Used for
 - vehicles
 - circuit board drills
 - ► testbed for metaheuristics (Simulated Annealing³, Taboo Search⁴, Ant Colony⁵ and more)

 1 Arora, JACM, 1998 2 Papadimitriou, Theo. Comp. Science, 1977 3 Kirkpatrick et al., science, 1983 4 Glover, Comp. and OR, 1986 5 Dorigo et al., Evo Comp IEEE, 1997

$NP\{,-complete,-hard\}$

► P

- decision problem
- solvable in polynomial-time
- ▶ e.g. "Is *x* prime?"
- ► NP
 - decision problem
 - verifiable in polynomial-time
 - e.g. "Is x composite?"
- NP-hard
 - any problem in NP can be reduced to one in NP-hard
 - ► e.g. TSP, Spinglass Groundstates
- NP-complete
 - ► is the intersection of NP and NP-hard
 - ▶ e.g. SAT, Vertex Cover, TSP-decision

Simple Heuristics

- Nearest Neighbor Heurist
- Greedy Heuristic
- Insertion Heuristics
- ► *k*-Opt Heuristics
- \rightarrow Visualization: tspView

Simple Heuristics

- Nearest Neighbor Heurist
- Greedy Heuristic
- Insertion Heuristics
- ► *k*-Opt Heuristics

How to judge if a solution is good, i.e., near the optimum?

Linear Programming

 $\begin{array}{ll} \mathsf{maximize} & \mathbf{c}^T \mathbf{x} \\ \mathsf{subject to} & \mathbf{A} \mathbf{x} \leq \mathbf{b}. \end{array}$

Hendrik Schawe LP by Example: The Travelling Salesperson Problem

Linear Programming

maximize $\mathbf{c}^T \mathbf{x}$ subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$.

- works outside the space of feasible solutions
- polynomial time
- ► can be used for combinatorial (integer) problems
 - is not always a valid solution
 - $\blacktriangleright \ \ \text{result valid} \rightarrow \text{result optimal}$
 - yields at least a lower bound

TSP as LP

let x_{ij} be the edge between cities i and j $x_{ij} = 1$ if i and j are consecutive in the tour else 0 $c_{ij} = \text{dist}(i, j)$ is the distance between city i and j

$$\mathsf{minimize} \sum_{i} \sum_{j < i} c_{ij} x_{ij}$$

for example

$$x_{ij} = \begin{pmatrix} \cdot & 1 & 0 & 0 & 1 \\ 1 & \cdot & 0 & 1 & 0 \\ 0 & 0 & \cdot & 1 & 1 \\ 0 & 1 & 1 & \cdot & 0 \\ 1 & 0 & 1 & 0 & \cdot \end{pmatrix}$$

is the cyclic tour (1, 2, 4, 3, 5)

$$\sum_{j} x_{ij} = 2 \quad \forall i \in V$$

every city needs 2 ways

$$\sum_{j} x_{ij} = 2 \quad \forall i \in V$$

every city needs 2 ways

$$\sum_{j} x_{ij} = 2 \quad \forall i \in V$$

every city needs 2 ways

$$\sum_{i \in S, j \notin S} x_{ij} \ge 2 \quad \forall S \subset V$$

- kills subtours/loops
- kills some fractional solutions
- global min-cut to find

 $\begin{array}{ll} \mbox{minimize} & \sum_{i} \sum_{j < i} c_{ij} x_{ij} \\ \mbox{subject to} & x_{ij} \in \mathbb{Z} \\ & \sum_{j} x_{ij} = 2 \quad i = 1, 2, ..., N \\ & \sum_{i \in S, j \notin S} x_{ij} \geq 2 \quad \forall S \subset V, S \neq \varnothing, S \neq V \ \ \mbox{(SEC)} \end{array}$

- \checkmark x_{ij} are restricted to integer
 - ► relax/ignore this and cope with it later
- $\checkmark \forall S \subset V$ are exponentially many
 - ► add only violated

Dantzig, Fulkerson, Johnson, J. Oper. Res. Soc. Am., 2 (1954) 393

maximize $x_1 + x_2$

 $x_i \in \mathbb{R}$

maximize $x_1 + x_2$

 $x_i \in \mathbb{Z}$

- Branch and Bound
 - "clever backtracking"
- Cutting Planes
 - add constraint
 - invalidate relaxed optimum
 - all feasible solutions stay feasible

maximize $x_1 + x_2$

 $x_i \in \mathbb{Z}$

- Branch and Bound
 - "clever backtracking"
- Cutting Planes
 - add constraint
 - invalidate relaxed optimum
 - all feasible solutions stay feasible

maximize $x_1 + x_2$

 $x_i \in \mathbb{Z}$

- Branch and Bound
 - "clever backtracking"
- Cutting Planes
 - add constraint
 - invalidate relaxed optimum
 - all feasible solutions stay feasible

Visualization of some Examples

 \rightarrow Visualization: tspView

Generating a solution from a LP relaxation

- more sophisticated cutting planes
 - Blossom inequalities
 - Comb inequalities
 - ▶ ...
- Branch-and-Bound or Branch-and-Cut

Current Research in Statistical Physics

Phase transitions in optimization problems

Are there solvable \rightarrow not solvable transitions?

Are there easy \rightarrow hard transitions?

LP-relaxation is integer \rightarrow obtainable in polynomial-time \rightarrow easy

Tunable Ensemble

Ensemble of disordered circles driven by the parameter $\boldsymbol{\sigma}$

1. N cities on a circle with $R=N/2\pi$

Tunable Ensemble

Ensemble of disordered circles driven by the parameter $\boldsymbol{\sigma}$

- 1. N cities on a circle with $R=N/2\pi$
- 2. displace cities randomly

 $r\in U[0,\sigma], \phi\in U[0,2\pi)$

Tunable Ensemble

Ensemble of disordered circles driven by the parameter $\boldsymbol{\sigma}$

- 1. N cities on a circle with $R=N/2\pi$
- 2. displace cities randomly

- $r\in U[0,\sigma], \phi\in U[0,2\pi)$
- 3. optimize the tour

Is there a phase transition — easy circle \rightarrow hard realization?

 $\sigma = 40$

 $\sigma = 160$

Performance of the heuristics

- \blacktriangleright easy for small σ
- LP gives a very tight lower bound

Solution probability p

Probability p that the SEC-relaxation is integer

Schawe, Hartmann, EPL 113 (2016) 30004

Solution probability \boldsymbol{p}

Probability p that the SEC-relaxation is integer

Schawe, Hartmann, EPL 113 (2016) 30004

If you have a optimization problem and need to know the quality of your heuristic solution:

 \Rightarrow Consider linear programming.

Thank you for listening

What's the complexity class of the best linear programming cutting-plane techniques? I couldn't find it anywhere. Man, the Garfield guy doesn't have these problems ...

CC BY-NC Randall Munroe http://xkcd.com/399/

Stör-Wagner Global Minimum Cut⁷

- $\blacktriangleright \mathcal{O}(|V||E| + |V|^2 \log |V|)$
- 1. find an arbitrary s-t-min-cut
- 2. merge s and t
- 3. repeat until one vertex is left
- 4. smallest encountered s-t-min-cut is global min-cut

⁷M. Stör and F. Wagner, JACM, 1997

Blossom Inequalities

$$\sum_{m=0}^{k} \sum_{i \in S_m, j \notin S_m} x_{ij} \ge 3k+1$$

 $k \mathsf{ odd}$

$$\begin{split} S_i \cap S_j &= \varnothing & \forall i, j \in \{1, \dots, k\} \\ S_0 \cap S_i &\neq \varnothing & \forall i \in \{1, \dots, k\} \\ S_i \setminus S_0 &\neq \varnothing & \forall i \in \{1, \dots, k\} \\ & |S_i| &= 2 & \forall i \in \{1, \dots, k\} \end{split}$$

Blossom Inequalities

Blossom Inequalities

First Excitation: The Second Shortest Tour

Uniformly distributed cities in high dimensions $2 \le D \le 312$.

tour difference fitted to $d = aN^{-\delta}$

Runtime Measurements

Structural Properties

Those measurements are surely method dependent.

- \rightarrow search for "physical" properties of the optimal tours
 - solve them by branch-and-cut
 - only possible for fairly small instances
 - ► do structural properties change at the transition points?

Tour Difference \boldsymbol{d}

- Distance of two tours.
- Number of edges in the first tour, but not in the second.
 - $\blacktriangleright ~\sim$ Hamming Distance
- \blacktriangleright normalized by N

On the right: $d(x_{ij}^{\circ}, x_{ij}^{*})$, i.e. difference between inital circle and optimal tour.

$$\tau = \frac{n-1}{L} \sum_{i=1}^{n} \left(\frac{L_i}{S_i} - 1 \right)$$

$$\tau = \frac{n-1}{L} \sum_{i=1}^{n} \left(\frac{L_i}{S_i} - 1 \right)$$

Universality

Same analysis with other ensembles (Gaussian displacement, displacement in three dimensions, some blossom inequalities)

	σ_c	b
Degree relaxation	$\sigma_c^{\rm lp} = 0.51(4)$	$b^{\rm lp} = 0.29(6)$
SEC relaxation	$\sigma_c^{\rm cp} = 1.07(5)$	$b^{\rm cp} = 0.43(3)$
	$\sigma_c^{\tau} = 1.06(23)$	-
	$\sigma_c^{\rm cp,g} = 0.47(3)$	$b^{\rm cp,g} = 0.45(5)$
	$\sigma_c^{\tau,\mathrm{g}} = 0.44(8)$	-
	$\sigma_c^{\mathrm{cp},3} = 1.18(8)$	$b^{\mathrm{cp},3} = 0.40(4)$
fast Blossom rel.	$\sigma_c^{\rm fb} = 1.47(8)$	$b^{\rm fb} = 0.40(3)$