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Summary

In the thesis at hand Monte Carlo meth-
ods originating from statistical physics

Zusammenfassung

In dieser Dissertation werden Monte-
Carlo-Methoden, die aus der statisti-

are applied to study various problems schen Physik stammen, genutzt, um un-
in far more detail than before. While terschiedliche Probleme genauer zu un-
all those problems have in common that tersuchen als bisher üblich. Alle hier
they were up to now mainly studied in untersuchten Probleme wurden bisher
regards to the mean values of some ob- hauptsächlich im Hinblick auf Mittel-
servable, in this thesis the full distri- werte von bestimmten Messgrößen un-
bution including very rare events with tersucht. In dieser Dissertation hinge-
probabilities in the order of 10−100 and gen wird die gesamte Verteilung inklu-
smaller are obtained and discussed. sive sehr seltener Ereignisse mit Auf-
The first and largest project of this trittswahrscheinlichkeiten von weniger

thesis is about the distribution of the als 10−100 ermittelt und diskutiert.
volume and surface of the convex hulls Am Anfang dieser Dissertation be-
around the traces of random walks. The handeln wir die Verteilung des Volu-
first part of this project looks at the mens und der Oberfläche von konve-
hulls of standard random walks. For xen Hüllen, die von einem Random-
this rather simple model much progress Walk besuchte Orte einschließen. Zu-
was made in the last decades and it is nächst werden dort die die konvexen
the only problem of this thesis for which Hüllen von einfachen Random-Walks un-
prior numerical results of the whole dis- tersucht. Für dieses Modell wurden in
tribution exists in the special case of two den letzten Jahrzehnten bereits einige
dimensions. Therefore this thesis focuses Fortschritte erzielt und es ist das ein-
on a generalization to higher dimensions. zige Modell dieser Dissertation für das
The second part of this project scruti- bereits numerische Ergebnisse für den
nizes more complicated types of random zweidimensionalen Spezialfall über die
walks which interact with their past tra- Verteilung bekannt sind. Dieser Teil un-
jectory. This interaction makes these tersucht die entsprechende Generalisie-
random walks suitable as models for, rung für höhere Dimensionen. Der zweite
e.g., polymers. The same interaction Teil dieses Projekts erforscht komplizier-
also leads to an increased difficulty in tere Random-Walk-Modelle, die mit der
obtaining results analytically, such that von ihnen hinterlassenen Spur wechsel-
the numerical examination of the whole wirken. Diese Wechselwirkung macht sie
distribution seems worthwhile. zu geeigneten Modellen beispielsweise
The second project examines the dis- für Polymere. Die Wechselwirkung mit
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tribution of the ground-state energy of sich selbst führt allerdings zu Schwierig-
a generalized random-energy model, a keiten, analytische Ergebnisse zu erhal-
toy model from statistical physics with ten, sodass die numerische Erforschung
applications to phase transitions and der Verteilung lohnend scheint.
spin glasses. There we find a univer- Das zweite Projekt untersucht die
sal asymptotic form for the distribution Verteilung der Grundzustandsenergi-
of the ground-state energies in the limit en eines verallgemeinerten Random-
of large systems, only dependent via two Energy-Modells, ein stark vereinfach-
parameters on the behavior of the un- tes Modell der statistischen Physik zur
derlying distribution of the single energy Untersuchung von Phasenübergängen
levels in the system. und Spingläsern. Für die Verteilung der

The third project scrutinizes the dis- Grundzustandsenergien finden wir ei-
tribution of the length of the longest ne universelle asymptotische Form im
increasing subsequence of different types Grenzfall von großen Systemen, die nur
of random sequences. This very simple durch zwei Parameter vom Verhalten der
model is connected to statistical physics Verteilung abhängt, aus der die einzel-
via its relation to the Kardar-Parisi- nen Energiestufen gezogen werden.
Zhang universality class, which describes Das dritte Projekt ermittelt die Ver-
the fluctuations of the surface of many teilung der Länge der längsten aufstei-
growth processes. For a case with known genden Teilfolge von unterschiedlichen
asymptotic distribution of the length we Typen von zufälligen Folgen. Dieses ein-
can show a convergence of our measured fache Modell ist von Interesse für die
distributions to the asymptotic form for statistische Physik, da es eng mit der
very large parts of the distribution. For Kardar-Parisi-Zhang Universalitätsklas-
another case we can confirm a proposed se zusammenhängt, die die Fluktuatio-
scaling law also in the far tails of the nen der Oberfläche bei vielen Wachs-
distribution. tumsprozessen beschreibt. Für eine Va-

The fourth project of this thesis takes riante des Modells beobachten wir die
a look at the robustness of networks. Konvergenz gegen die analytisch be-
Since all systems of interacting objects, kannte asymptotische Form. Für eine
be it social networks, energy grids or the- andere Variante bestätigen wir eine zu-
oretical models on grids or more compli- vor vorgeschlagene Form in den Berei-
cated topologies, can be modeled with chen der Verteilung, die extrem unwahr-
networks, it is of fundamental interest scheinliche Ereignisse beschreiben.
how robust these systems are to failures Das vierte Projekt dieser Disserta-
of single objects. Therefore we looked tion erforscht die Stabilität von Netz-
at a rather simple property of networks, werken. Da alle Systeme, die aus wech-
the size of the largest biconnected com- selwirkenden Objekten bestehen, sei-
ponent. The biconnected component is en es soziale Netzwerke, Stromtrassen
invulnerable to failures of one single ob- oder theoretische Modelle, die auf Git-
ject, such that a large biconnected com- tern oder komplizierteren Topologien
ponent is an indication for a robust net- definiert sind, durch Netzwerke mo-
work. We studied the distribution of its delliert werden können, ist die Stabi-
size for two otherwise very well studied lität bei Ausfall von einzelnen Objek-
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network models. ten von grundlegendem Interesse. Des-
halb betrachten wir in diesem Projekt
eine vergleichsweise einfache Messgröße
von Netzwerken: Die Größe der größten
Zweifach-Zusammenhangskomponente.
Solche Komponenten sind immun gegen
den Ausfall eines einzelnen Objekts, so-
dass ihre Größe ein geeigneter Indikator
für die Stabilität eines Netzwerks ist. In
dieser Dissertation untersuchen wir die
Verteilung dieser Messgröße für zwei be-
kannte Zufallsgraphmodelle.
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1. Introduction

Simulations are the youngest sibling of experiments and theory in physics.1 One rec-
ognizes their relationship easily considering that simulations, similar to theory, are
able to scrutinize arbitrary models – realizable or not. Similar to experiments, simula-
tions gather data to derive conclusions about the models. For many theoretically well
researched models experimental data is scarce or non-existent and instead simulations
are playing the part of experiments in the scientific process. Some real processes are
characterized by complex interactions and hence are not suited for analytical treat-
ment, such that simulations are needed to design a theory predicting the results of
experiments [1]. Where theory has to approximate too much and where experiments
struggle to be designed such that the effects of interest can be observed without drown-
ing in noise, simulations can shine. The perfect control over every aspect of the model
and the relative ease to change or disable certain mechanisms of the model make them
a capable tool to understand the mechanisms which lead to the behavior of interest in a
system. Due to the undeniable increase in computing capability over the last decades,
the importance of this complementary branch of physics only increases, as the study
of more complex models and harder to observe measurables becomes feasible.

In this dissertation the focus is mainly on intriguingly simple models which my
coauthors and I studied, mainly using simulations, during the last years. The studied
models originate from diverse fields ranging from statistical physics over combinatorics
to graph theory, such that it is most sensible to introduce each in their own section
in the course of this thesis. The common theme, which is present in every publication
belonging to this thesis, is that for each model we study the behavior of one or two
observables of interest in very high detail. For the observable of interest we obtain
a large part of their distributions numerically. Especially the far tail behavior, with
probabilities far smaller than 10−100, is probed for the first time for the corresponding
models. Properties of distributions including these extreme tails, are usually called
large-deviation properties. Knowledge of the large-deviation behavior enables us to
observe properties which are hidden in the part of the distribution inaccessible by
conventional sampling methods leading to a deeper understanding of the atypical and
rare events. Also it allows us to test, e.g., scaling assumptions over almost the whole
range of possible values, which strengthens the confidence in analytical results which
are otherwise seldomly tested in these limits.
More background of large deviations and methods which enable the simulational

study of large deviations, underlying every publication of this thesis, are introduced
first in Chapter 2. It will establish a bit of background of large deviation theory

1This metaphor is inspired by David Landau’s triangle [1, p. 5].
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1. Introduction

from a mathematical perspective and introduce in detail numerical methods to study
large-deviation properties. Due to its centrality to each publication of this thesis, this
methodical part constitutes a large portion.

The problems, to which these methods are applied, are formulated in the subsequent
Chapters 3 to 6. They are structured in a rather strict way, where for each the state of
the current research is stated and elaborated by summarizing important milestones in
their history in a more throughout fashion than possible in a research article. Directly
after establishing the background of the problem the research question for the cor-
responding study will be stated. These sections may contain some vocabulary which
might be unfamiliar to the reader. While most concepts should be explained in enough
detail to understand the text, some readers might prefer to read the more throughout
and formal definitions given in the models and methods sections first. In these sections
models and methods special to the problem at hand will be explained. Some technical
details which would take too much space in the main text are moved to Appendix B;
at the corresponding places this appendix will be referenced. The most important
results obtained and published by my coauthors and me are very shortly summarized
in the concluding results section of every problem.

However, for a comprehensive understanding of the results it is recommended to
read the research papers in Appendix A, where for every publication also a concise
statement of the contributions of every coauthor involved is given. This part of the
cumulative thesis at hand consists of 6 manuscripts, of which 5 (Articles A.1, A.2
and A.4 to A.6) are published in peer reviewed journals and the remaining article
(Article A.3) is accepted by a peer reviewed journal. All manuscripts in which I am
listed as coauthor and which are published or submitted at the time of writing, also
to topics not part of this thesis, are listed in Appendix C.

The most central group of models under scrutiny in this thesis is introduced in
Chapter 3. There the relevance of convex hulls around random walks, their construc-
tions and the definitions of different random walk models are explained in detail for
all models under scrutiny in Articles A.1 to A.3. Chapter 4 will take a look at the
distribution of the ground-state energy of a random-energy toy model and which con-
nection to statistical physics and even fundamental stochastics exist. Chapter 5 will
scrutinize the distribution of the length of the longest increasing subsequence of differ-
ent random sequences, which is a simple combinatorial problem with links to growth
processes of the Kardar-Parisi-Zhang universality and the Tracy-Widom distribution.
At last Chapter 6 motivates a study we conducted for the distribution of the size of the
largest biconnected component of random graphs, that is the largest subgraph which
stays connected after removing any node.

2



2. Large Deviations: Background and
Numerical Methods

This chapter introduces the reader to the concepts of large deviations and the methods
used to study them. These concepts and methods are used throughout all publications
belonging to this thesis.

In Section 2.1 we will explore the basic meaning of large deviation theory, though
without mathematical rigor or the derivation of analytical tools. This first part should
demonstrate the background and an analytical approach to the problems we will handle
numerically in this thesis. It should elucidate the reader what a rate function is and
why we are interested in it.

Consequently Section 2.2 will focus on numerical methods to examine large devia-
tions. It will give a short overview over the historic evolution, starting at the basic
concept of Monte Carlo over some historically significant approaches to probe the be-
havior of specific physical problems efficiently to the methods used in the publications
belonging to this thesis, which are described in more detail.

2.1. Large Deviation Theory

Large deviation theory is a mathematically rigorous theory to describe the fluctuations
of stochastic processes. This includes the small fluctuations close to the typical values
as well as the large fluctuations far away from typical values, from which its name
stems. Historically [2], large deviation theory as a unified general framework came up
in the 1960s and 1970 by the works of Donsker and Varadhan. Although first results
can be attributed [3] to Boltzmann, who derived some as the foundation for statis-
tical mechanics, and many other mathematicians anticipating parts of this theory.
For example, Cramér [4] found in the 1930s the large deviation principle (cf. Equa-
tion (2.1)) for the empirical mean, which we will use in the following as an example
(cf. Equation (2.2)).

Large deviation theory is mainly a concept used in the context of statistical me-
chanics, but since statistical mechanics is known to apply its methods to problems of
other branches of physics, large deviation theory is applied to a varied spectrum of
problems [3]. As a concrete example, take a very recent paper, where it was applied
to a problem from fluiddynamics. A discrete model of Taylor dispersion was studied
in Reference [5], i.e., given a Poiseuille flow, which is a laminar flow in a cylinder,
what is the distribution of the displacements of particles floating in the fluid.1 While

1Not to be confused with the flow profile, which is a parabola and known for much longer.
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2. Large Deviations: Background and Numerical Methods

it was known for a long time to be approximately a Gaussian [6], using large deviation
techniques lead to corrections to this behavior.

In the remainder of this section large deviation theory will be introduced in rough
strokes. Therefore, I will follow the structure of the excellent review article of Hugo
Touchette2 [2] and borrow some notation and examples from it. This introduction
to large deviation theory will not contain any proofs, rather it should give an under-
standing of its usefulness, which will be illustrated with simple examples of some of
its core machinery in action. Some of the examples might seem overly technical and
may be skipped without compromising the understanding of following chapters. How-
ever, they are included in this thesis to give a glimpse of the background and other
approaches to the problems, which are a central part of the thesis.

The central prerequisite to apply large deviation theory is that the large deviation
principle holds. The large deviation principle fundamentally means that the tail of
the distribution decays as an exponential in some parameter n. To be more precise,
the probability density function P (x = x0) needs to behave like

Pn(x) = exp (−nΦ(x) + o(n)) ≈ exp (−nΦ(x)) , (2.1)

with the Landau symbol o(n) representing terms of order less than n. Φ is called
the rate function and is the central quantity of large deviation theory. If such a
rate function exists, the large deviation principle holds. In the limit of large n, the
whole distribution is characterized by the rate function. The parameter n can be
anything, a time, a size or a number of iterations. Large deviation theory can only
make statements for large values of n, which makes it a perfect fit for statistical
physics, where we are mostly interested in the thermodynamic limit, i.e., in systems
with n → ∞ elements, such that large deviation theory finds application here. Of
course, not every process fulfills the large deviation principle: The probability density
function could decay sub- or super-exponentially, or could be too singular. Therefore,
in best mathematical fashion, an important part of the problem is always to show the
existence of the rate function. This is also addressed in most of the publications of
this thesis in Appendix A, but with non-rigorous numerical arguments.
As a simple example of a process fulfilling the large deviation principle, we will look

at the mean of n binomial random variables. For historic reasons, which will be laid
out in Section 2.2, we look at the random process of winning a game of solitaire. Each
game of solitaire is winnable with probability p. We are interested in the distribution
of the winrate after n games played. Since every new game of solitaire is played with
a freshly shuffled deck of cards, we consider n independent random variables Xi, each
is 1 with probability p and 0 with 1− p. Their mean value

An = 1
n

n∑
i=1

Xi (2.2)

2During the summer school “Fundamental Problems of Statistical Physics XIV” 2017 in Bruneck, I
had the opportunity to attend a lecture of Hugo Touchette about this exact topic [7].
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2.1. Large Deviation Theory

is the random variable describing the winrate. For this toy example the distribution
is known to be binomial and the probability density function to be

P (An = k/n =: a) =
(
n

k

)
pk (1− p)n−k = n!

k!(n− k)!p
k (1− p)n−k . (2.3)

The parameter n is the number of games played and since large deviation theory does
only make statements for large values of n, we can use Stirling’s formula n! ≈ nne−n.
Looking at the logarithm of the combinatorial term, yields

ln n!
(an)!(n− an)! = n [−a ln a− (1− a) ln(1− a)] .

Which leads with the second part of Equation (2.3) to an asymptotic probability
density function of

lnPn(An = a) = n

[
a ln p

a
+ (1− a) ln 1− p

1− a

]
.

Comparing this to the expression for the large deviation principle Equation (2.1)
one can read off the rate function

Φ(a) = −a ln p
a
− (1− a) ln 1− p

1− a. (2.4)
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Figure 2.1.: Distribution Pn of the mean a of n binomial random numbers with its correspond-
ing rate function Φ. (While Pn is a discrete distribution, the normalization here pretends that
it is a continuous distribution for clarity.)

The rate function Φ(a) governs how the probability density decays. In Figure 2.1
the probability density is shown for various values of n and p = 0.5 together with the
rate function Φ(a). In this example, it is clear that the probability concentrates at
the point a = p, since Φ(p) = 0 is the unique root of the rate function, i.e., it is the
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2. Large Deviations: Background and Numerical Methods

only point where the probability density does not decay exponentially. Or in a more
mathematical formulation limn→∞ P (An = p) = 1, which is also known as the law of
large numbers.

There is a class of well studied problems, whose rate function Φ has a unique mini-
mum and zero at a0, is convex and twice differentiable, like the example in Figure 2.1.
This kind of rate functions can be obtained via the Gärtner-Ellis theorem, which will
be introduced below. For these we can approximate the rate function using a Taylor
expansion to second order:

Φ(a) ≈ 1
2

d2Φ
da2 (a0) (a− a0)2 . (2.5)

The corresponding probability density is

P (a) = e−nΦ ≈ exp
(
−n d2Φ

da2 (a0) (a− a0)2
)
.

That means that small fluctuations, near the most probable value a0 can be approx-
imated by a Gaussian for large n. This is the same statement as the central limit
theorem would give for our example. This is no coincidence and there is a rigorous
proof that the central limit theorem follows from the large deviation principle [8].

The last paragraphs showed some statements about small deviations, which can be
derived if the rate function is known. Since the rate function contains the information
of the distribution in leading order, i.e., the complete behavior of the distribution in the
large n limit, this is not really surprising. The real appeal of large deviation theory is
the apparatus of methods to show the existence of a rate function and derive it without
a way to directly obtain the large n behavior of the probability density function. We
will revisit the example above, for which we derived the rate function directly using
Stirling’s formula, and derive its rate function using a more formal approach.

Gärtner-Ellis Theorem First, let’s look at (a simplified version of) the Gärtner-Ellis
theorem. For a random variable An the scaled cumulant generating function is defined
as

λ(k) = lim
n→∞

1
n

ln
〈

enkAn
〉

(2.6)

with k ∈ R and 〈
enkAn

〉
=
∫

da enkaP (An = a), (2.7)

which is called moment generating function and is technically very closely related to a
Laplace transform. The Gärtner-Ellis theorem states that An fulfills the large deviation
principle if λ(k) is differentiable for all k and in that case the rate function is given by
the Legendre transform Φ(a) = supk∈R {ka− λ(k)} . Technically, this is a Legendre-
Fenchel transform, a generalized Legendre transform for non-convex functions, which
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2.1. Large Deviation Theory

chooses the supremum3 of all non-unique branches. This can intuitively be understood
as taking the most probable event causing this fluctuation, since this will dominate
the behavior of the rate function. This is also known as Laplace’s approximation. In
the case of a unique inversion k(a), this reduces to the classical Legendre transform.
The Legendre transform constructs dual functions in the sense that the function’s Φ
and λ first derivatives are inverses of each other, i.e., λ′(k) = a and Φ′(a) = k.

To illustrate this, consider the binomial process from above. The probability density
function of the i-th event is P (Xi = xi) = pδ(xi − 1) + (1 − p)δ(xi) with the Dirac
delta. Now, we want to obtain the distribution of the winrate Equation (2.2) for n
events. So looking at the logarithm of the moment generating function Equation (2.7),
the cumulant generating function, we get

ln
〈

enkAn
〉

= ln
〈

enk
1
n

∑n

i=1Xi
〉

=
n∑
i=1

ln
〈

ekXi
〉

= n ln
〈

ekX1
〉

= n ln
(
pek + 1− p

)
,

where we use that every event is identically distributed and independent and evaluate
the integral 〈·〉 over the delta functions. This expression can be inserted into Equa-
tion (2.6)

λ(k) = lim
n→∞

1
n
n ln

(
pek + 1− p

)
= ln

(
pek + 1− p

)
.

To perform the Legendre transform as the last step, we first need to perform the
inversion

a = λ′(k)

= pek
pek + 1− p

⇒ k(a) = ln a(p− 1)
p(a− 1) .

With these two intermediate results, the evaluation of the Legendre transform reduces
to just some elemental algebra

Φ(a) = ka− λ(k)

= a ln a
p

+ (a− 1) ln p− 1
a− 1 ,

which is identical to Equation (2.4).
3The supremum is the smallest upper bound, so for closed sets it is equivalent to the maximum.
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2. Large Deviations: Background and Numerical Methods

Note however that this method will not always work. For example, rate functions
which are not strictly convex can not be obtained with this method. While there
are more analytical tools, which might work in those cases, it is certainly out of
scope of this thesis to give a comprehensive overview over the analytical methods
of large deviation theory. The thesis at hand instead uses a toolset of sophisticated
numerical sampling methods to obtain estimates of the distribution and estimate the
rate function from these data. The major ideas needed for those numerical methods,
historical milestones and detailed descriptions of the algorithms used to generate the
published results of this thesis are presented in Section 2.2.

2.2. Monte Carlo Methods

The term Monte Carlo methods refers to a large class of methods which use random-
ness to calculate some quantity of interest. A famous Monte Carlo algorithm for the
calculation of π is Buffon’s needle. This was originally posed in the 18th century as a
geometrical riddle asking for the probability of a needle of length l thrown on a piece
of paper with parallel lines of distance t to intersect a line. For short needles l < t, the
probability is4 p = 2l

πt . Performing an experiment to throw N needles and count the
number x of needles crossing a line leads to an estimate for p ≈ x/N , which can be
used for an estimate of π ≈ 2lN

xt . The estimate is subject to a statistical error scaling
as O(N−1/2), which makes this method a particular bad algorithm for estimating π.

The founding myth [9] of modern Monte Carlo goes back to 1946, when Stanisław
Ulam, recovering from a disease, played Canfield Solitaire, a variant of solitaire with a
low winning probability. The small number of games he could win probably prompted
him to think about the probability that a given game is winnable. After futile at-
tempts using combinatorial arguments, he wondered if it would be more practical to
just play it a hundred times and observe how often he would win. A task he assumed
the (by some definitions first) programmable electronic computer ENIAC (Electronic
Numerical Integrator and Computer, 1945) at his working place, the Los Alamos Lab-
oratories, could do. While it is not delivered whether he ever used the ENIAC for this
problem, we have to assume that compute time was too valuable at the time. But
he thought about applying this idea to physical problems, namely neutron diffusion.
Later, together with John von Neumann, they planned the first Monte Carlo simula-
tions for physical problems to be run on the ENIAC. Around this time also the name
“Monte Carlo” was coined. It was suggested5 by Nicholas Metropolis as a codename

4A classical way to derive this result (as featured in the Wikipedia), is to split the probability p into
p1 and p2. Each needle is defined by two independent random variables, the distance of its center
to the next line x and its acute angle with the line θ. Since both are uniformly distributed, their
probability density functions are p1 = 2/t if 0 ≤ x ≤ t/2 and p2 = 2/π if 0 ≤ θ ≤ π/2. A needle
crosses a line, if the distance to the line is smaller than the projection of the needle perpendicular
to the line; to be precise if x < l/2 cos(θ). Integrating the joint probability in these borders yields∫ π/2

0 dθ
∫ l/2 cos(θ)

0 dx 4
tπ

= 2l
tπ
.

5“not unrelated to the fact that Stan had an uncle who would borrow money from relatives because
he ‘just had to go to Monte Carlo’.” in the words of Metropolis himself [10]
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2.2. Monte Carlo Methods

for the project.6

2.2.1. Simple Sampling

To stay at the example of a game of solitaire, the simple method envisioned by Ulam
is to shuffle a deck of cards, play out the game of solitaire and note if the game
was won or not. If we iterate this N times, we can generate a histogram of our
data to approximate a probability density function. We could even collect some more
complicated observables, say the number of cards we have to touch. The downside is
that only realizations from the peak of the probability density functions are sampled,
i.e., to reach a configuration which occurs with probability p, roughly 1/p samples
need to be generated. Even worse, every approximation of an expected value is tainted
with a statistical error of order O(N−1/2). Therefore it is infeasible to obtain the large
deviation tails of the probability density function for probabilities of p . 10−10 with
this method.
Simple sampling will always yield more samples from the high probability region

of a distribution, but those samples are useless to get information about the tails of
the distribution. This is not only a problem when the region of interest is in the far
tail of a distribution, but sometimes realizations are not easy to generate uniformly.
For example look at the self-avoiding random walk (a more detailed elaboration of
this model and this problem is in Section 3.3.1), the ensemble of all random walks
on a square lattice, which do not visit any site twice. To perform simple sampling,
one has to generate a random walk and discard every realization which visits any site
twice. Since the chance to step on an already visited site is roughly constant per
step, this leads to exponential attrition in the length of the walk, i.e., to generate one
self-avoiding random walk of length T we would need to create O(exp(T )) attempts.
This is not feasible for any but the smallest systems. So we would rather concentrate
on the important realizations which do not step twice on any site.
Due to this drawback of simple sampling, we need a better way to sample the more

important parts of the distribution of interest. Which part is more important is, of
course, dependent on the question we have. In the next sections, some techniques are
presented to collect samples more cleverly suited to the problem at hand. This part
culminates in the methods that were used in the studies which are part of this thesis.

2.2.2. Variance Reduction Techniques

Approaches to improve simple sampling by reducing the statistical error are almost as
old as Monte Carlo itself. A lower error means that fewer samples are needed, which
results in less compute time and enables therefore the study of larger or more complex
models. These techniques were collected under the term variance reduction [11].
Probably the most important technique, and the technique used in the publications

of this thesis, is importance sampling. Before we look at importance sampling some
6A codename was required since the work in the Los Alamos Laboratories was for military purposes
– at this time fission and the first fusion weapons – and considered secret.
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2. Large Deviations: Background and Numerical Methods

other interesting approaches are introduced. This is a non-exhaustive historical and
methodical overview over the field. Also some of the presented ideas can be combined.

We change our example from a game of solitaire to something simple to simulate
and more suited for a casino in Monte Carlo: Rolling dice (cf. Reference [11]). As a
toy example, we want to know the probability p for two six-sided dice to sum to 3,
i.e., tossing or . The relative error7 for a sample of N tosses of this binomial
process is

∆ =
√

1− p
Np

. (2.8)

As an alternative to increasing the sample size N to lower the relative error, it is
possible to modify the generation of the samples such that the effective value of p
is larger. We explore some ideas in this section and test them on this very simple
dice rolling example. Also we look for each of the techniques at a real application to
demonstrate its capabilities beyond a toy model.

For the toy model however, a comparison of results for N = 104 dice tosses is vi-
sualized in Table 2.1. The estimate of the standard error is obtained using bootstrap
resampling [12–14]. Since this comparison is in no way rigorous and the choice of the
algorithm details under the concepts is not optimal, it is more meant as a demon-
stration that the methods work in principle and is not to be mistaken as a quality
assessment.

exact 0.0555
simple sampling 0.0544(23)
Russian roulette & splitting 0.0569(17)
importance sampling 0.0549(11)

Table 2.1.: Estimated probability of two dice summing to 3. Error estimates via bootstrap
resampling. Data gathered over N = 104 samples each.

Russian Roulette & Splitting is a catchy name8 for a simple idea. If we have a set
of samples si with some sensible weights wi we assigned, e.g., for each of N samples
obtained by simple sampling wi = 1/N , we can calculate a mean value as 〈a〉 =∑N
i=1wisi/

∑N
i=1wi. Without changing the result, we can split (that means duplicate)

a sample sj with weight w of this set into n samples with arbitrary weights wi, such
that w = ∑n

i=1wi.
Doing this in the end, after all samples are gathered, does not have any benefit,

of course. But if the creation of our samples consists of multiple steps, we might be
able to judge which partial realization is important and which is not. We can then

7The standard error of a sample is s = σ√
N
, where the standard deviation for a binomial process is

σ =
√
p(1− p). The relative error is therefore ∆ = s/µ with the mean µ = p.

8According to Reference [11] it was named by von Neumann and Ulam.
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2.2. Monte Carlo Methods

split the important ones into m partial realizations with each 1/m of the previous
weight and “branch” out from this point to create more samples, which are important.
Similarly, the Russian Roulette part of the name hints at the inverse procedure. If we
can identify partial realizations which will probably lead to unimportant samples, we
can discard them with probability9 q and increase the weight of the surviving partial
realizations to 1/(1− q) times their previous weight.

For our example, one could toss one die first. If it shows or , we deem this
partial realization as important. We will perform the second toss twice and count
both results each with half the weight. If we toss one of with the first die,
we see that we can not reach a sum of three anymore and deem this partial realization
as unimportant. With a probability of 2/3, we will not toss the second die, otherwise,
we will count this result with three times the weight.

Pruned-Enriched Rosenbluth Method (PERM) as introduced in Reference [15] uses
the basic idea of the above introduced “Russian Roulette & Splitting” and refines it for
the application to the self-avoiding random walk, which is a central topic of this thesis.
While the intricacies of generating uniformly distributed instances of self-avoiding
random walks will be explained in more detail in Section 3.3.1, it is not sufficient to
grow a walk and avoid already occupied sites. If this strategy is pursued, every time
we avoid an already visited site, we need to adjust the weight of this configuration.
Consider we are at the n-th step. There are mn allowed, i.e., unoccupied, sites for
the next step of M possible sites. First we look at the extreme cases: If mn = 0, no
step is possible and the whole configuration will be weighted with 0. If all sites are
unoccupied we have a chance ofmn/M = 1 to choose an allowed site for the next state,
such that the weight of this configuration stays the same. For values of mn in between
the next random step will lead with probability mn/M on an allowed site, otherwise
the walk may not be counted. So, if we ensure that the next step is on an unoccupied
site, e.g., by drawing random numbers until the corresponding step is allowed, we have
to adjust the weight of the resulting configuration by a factor to mn/M . For the whole
walk of T steps (after multiplying the weight with MT , which does not change the
result, to arrive at the same expression as Reference [15]) we arrive at a weight of our
configuration of WT ∝

∏T
n=1mn. This technique is named Rosenbluth-Rosenbluth

method [16] after the inventors. While this is much better than simple sampling, i.e.,
starting from scratch after stepping on an occupied site, at large lengths T it typically
leads to single samples with very large weights to dominate the statistics.
This is where the enrichment process comes into play. Enrichment [17] is basically

another word for “splitting” as introduced above. In PERM the splitting happens
as soon as the partial weight Wn exceeds some threshold value. In that case, two
realizations with half the weight are grown from this partial realization. The opposite
effect of too many irrelevant configurations with very small weights is counteracted
by pruning, which is a less offensive word for the same idea as “Russian roulette,”
explained above. As soon as the partial weight Wn of a partial realization is smaller

9In contrast to the game, q does not have to be 1/6, but can be chosen arbitrarily.
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than some threshold, this configuration is discarded with probability 1/2 and otherwise
its weight is doubled. This procedure ensures that the weights of all samples are in
a predefined range between the thresholds, and therefore contribute all roughly the
same to the measured property.

In this method also importance sampling (an explanation will follow below) can be
implemented to sample efficiently, e.g., the canonical ensemble, by biasing the site
which will be visited next. But since the study on the properties of self-avoiding
random walks in Article A.2 does not use PERM, but a different method to generate
self-avoiding random walks in an efficient way, we will not go into further detail here.

Importance Sampling generates more important samples and fewer unimportant
ones leading to better statistics. Here “important” means again “most useful to the
question we want to answer”. Like above it can be used to reduce the variance by
increasing the effective probability (which needs to be reweighted).

Coming back to our dice – an example that might look quite forced – we do not
sample the natural ensemble, i.e., in this case uniform among all realizations. Instead,
we will bias our sampling and reweight our results afterwards.
If we want to know the mean probability r of the sum of two dice being 3, which is

possible with the events and , we want to sample these important values more
often. Therefore we load the dice, such that the probability to roll a or is doubled,
leading to a non uniform sampling of the events. The rationale why this is preferable
is that the probability r′ to encounter the event of a sum of 3 in this biased sampling
is larger and the relative error Equation (2.8) therefore smaller (cf. Table 2.1). Of
course, the biased r′ obtained by sampling with loaded dice must be reweighted. Since
we know that for a sum of 3 we need to roll and in arbitrary order, which is four
times more probable than before due to the loading, we arrive at r = r′/4.

More generally, if we want to obtain an expectation value 〈S〉 for a function S(µ)
taking realizations µ of the system as an argument, which are distributed according
to some probability density function p(µ), we have to evaluate the integral

〈S〉 =
∫
C

dxS(x)p(x) (2.9)

over the configuration space C. We can use simple sampling to obtain the mean S̄ as
an estimate of the expectation value, by drawing uniform samples µ:

S̄ =
∑
µ S(µ)p(µ)∑

µ p(µ) . (2.10)

Formally, we can multiply Equation (2.9) with 1 = q(µ)
q(µ) , with a distribution q(µ) of

our choice, i.e.,

〈S〉 =
∫
C

dxS(x)p(x)
q(x)q(x). (2.11)
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For clarity we will consistently refer to samples drawn according to q as ν and uniform
samples as µ. If we generate samples ν according to q(ν), the evaluation of the mean
becomes

S̄ =
∑
ν S(ν)p(ν)/q(ν)∑
ν p(ν)/q(ν) , (2.12)

where p(ν)
q(ν) is called importance sampling factor. A clever choice of q(ν) might lead to

a lower variance and therefore a higher precision of S̄.
While this is the basic, general idea, there are still some tricky questions to answer.

First, it is not necessarily easy to generate realizations ν according to the distribution
q(ν) and Section 2.2.3 will show a solution to this problem.
Second, it is not always clear what q(ν) should look like. To understand which

choice of q(ν) is sensible, we first have to understand why this method might bring an
improvement at all. A criterion for an improvement of an estimate of an expectation
value would be a lower variance of the sample. Therefore we have to think about a
choice of q(ν) such that the variance of S(ν)p(ν)/q(ν) is small. The perfect case would
of course be that this term is equal to the actual expectation value 〈S〉 for every sample
ν, resulting in a variance of zero. This case is rather academic since it would require
the knowledge of S(ν) and p(ν) for every ν, in which case we can directly calculate
the expectation value without any need for sampling. But maybe we can guess how
S(ν)p(ν) behaves. For our simple dice example, we know that p(ν) is uniform for fair
dice and S(ν) = δ

ν,
+ δ

ν,
. What we did above, was a good guess for the form

of S(ν), which approximates the actual form, resulting in a reduced variance.
While mean values are maybe the most common use case for importance sampling,

it is far more generally applicable. We are interested in the large deviation behavior
of different distributions, i.e., in the very low probability tails. The recipe is the same
as above, we have to generate realizations according to a known distribution q in the
far tails and can then reweight them according to the chosen distribution q. The exact
procedure will be explored in detail in Section 2.2.3.

Transition Path Sampling While the canonical example for importance sampling –
at least among computational physicists interested in thermodynamic systems in equi-
librium – is the Metropolis algorithm applied to the Ising model for ferromagnetism
[18–20], we will instead look at Transition Path Sampling [21]. The reason for this
decision is that the Ising model, also called the fruit fly of statistical mechanics, is
probably one of the most well known and most often explained models.10 Also, transi-
tion path sampling has the advantage that it is used to study rare events and determine
the very small transition rates of those events. This makes it a suitable topic in the
context of this thesis.
The transition path sampling method originates in chemistry. As an example [23],

take a simulation of a few hundred water molecules and one weak acid molecule. For
10Also more than once by the author of this thesis [20, 22].
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a classical simulation, the timestep has to be in the order of 10−18 seconds, since this
is the timescale of the fastest motions of the water molecules, e.g., vibrational modes.
However, the halftime of the acid before dissociation is in the order of 10−3 seconds.
If we want to study this dissociation process using a proper molecular dynamics sim-
ulation, we would have to perform 1015 timesteps to observe O(1) dissociation event.
To get a reasonable estimate of the rate of the dissociation event, we would need to
observe at least tens or hundreds of events. This is not feasible with current computers.

A B

Figure 2.2.: Schematic energy landscape along two arbitrary reaction coordinates, e.g. bond
length, bond angles or even non-geometric coordinates. The black lines mark lines of equal
energy and the energy difference between two neighboring lines is the same. The points A
and B are located in valleys and separated by an energy barrier, such that dynamic trajec-
tories will only seldomly transition. A discrete path generated by the Metropolis algorithm
(cf. Section 2.2.3) is shown. Transition path sampling accumulates statistics over these paths
to estimate the very small transition rates from A to B.

What transition path sampling does instead is a Monte Carlo simulation of trajec-
tories using the above introduced importance sampling idea and the below introduced
Markov chain technique to generate trajectories of rare but important events, e.g.,
trajectories leading to the above mentioned example of the dissociation of the acid.
Consider an energy landscape like Figure 2.2, where in order for an interesting event
to happen, a particle needs to travel from A to B. Since there is an energy barrier
on every path from A to B, this event is rare in a conventional molecular dynam-
ics simulation. Instead, a discrete path is generated using the Metropolis algorithm
(cf. Section 2.2.3). The discrete path is nothing like a trajectory created by a molec-
ular dynamics simulation. Rather, it consists of a number of straight sections, where
at some points the (generalized) impulse changes abruptly. The points of the impulse
changes are marked by dots in Figure 2.2. Despite the trajectories not being realistic,
this method maintains the correct statistics to estimate the transition rates from the
samples of the discrete trajectories. Since the energy landscape is not known before-
hand and can be very high dimensional, the authors of Reference [23] call it “throwing
ropes over rough mountain passes, in the dark.”

The Metropolis algorithm starts with a random discrete trajectory from A to B,
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changes it a bit by changing the impulse at one of the dots and might revert the
change either because the new path does not end in B anymore or to maintain the
correct statistics of the visited trajectories. For example, the temperature T plays a
large role in chemical processes, since the probability to be at some position in the
energy landscape with energy E follows a Boltzmann distribution (in the canonical
ensemble) p ∝ e−E/kBT . Of course, the probability to take a path up- or downhill
in the energy landscape will depend also on the temperature. The exact mechanism
how to achieve this is not essential at this place, but will be shown in Section 2.2.3
in general and is described, e.g., in Reference [23] for the transition path sampling
case. Of the ensemble of all trajectories from A to B improbable trajectories will be
sampled less often than probable trajectories. If the sample is large enough, this allows
a precise characterization of the trajectories from A to B, e.g., the rate with which
this transition happens.

2.2.3. Markov chain Monte Carlo: The Metropolis Algorithm
The fundamental ingredient for importance sampling is the generation of samples
according to a specific distribution. Markov chains are an instrument to construct
samples distributed according to any distribution. This technique is referred to as
Markov chain Monte Carlo (MCMC ). We will spend some time here to introduce
Markov chains and a lot of notation used in the following sections. Note that the
structure and notation of this section follows largely References [1, 19].
FundamentallyMCMC uses aMarkov process to generate realizations from a specific

distribution efficiently. This stochastic process is discrete in time and has at time t
some state µ. The Markov property means that at any time ti the state ν only depends
on the state µ at ti−1. This means that the time evolution can be characterized by
transition probabilities P (µ → ν). For the transition probabilities to be useful for
our application, we assume them to be time independent, i.e., only dependent on the
current state and the state of the next step. Also the probability that a transition
occurs needs to be unity, i.e., ∑

ν

P (µ→ ν) = 1, (2.13)

where ν does not need to be different from µ. Starting this process in an arbitrary
state, will create a timeseries of states, which is commonly called Markov chain.
To sample the wanted distribution, one has to ensure that every state can be reached

by the Markov chain – one says, the Markov process must be ergodic. Therefore the
transitions must be designed in a way that they can reach every configuration from
any other in finite time.11

As mentioned before, the Markov process is a means to the end of generating states
µ according to some distribution pµ. So the Markov process needs to be stationary, i.e.,
11While this may sound like it is no problem, there are examples for algorithms which do not fulfill

ergodicity and therefore lead to wrong results. A fitting example is the “slithering snake” (also
called “reptation”) move of the self-avoiding random walk [24].
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dpµ(t)
dt = 0. To ensure this, we look at the master equation, which makes a statement

about the time evolution of stochastic processes

dpµ(t)
dt =

∑
ν

[pν(t)P (ν → µ)− pµ(t)P (µ→ ν)] . (2.14)

It can be seen as a continuity equation for probabilities, since it basically states that
the change in probability of the Markov process to be in state µ on the left-hand side
is the difference of the rate entering this state and the rate leaving this state. For a
stationary state pµ independent of the time t it is therefore necessary that the rate of
the transitions into some state is the same as the rate out of this state∑

ν

pµP (µ→ ν) =
∑
ν

pνP (ν → µ). (2.15)

This is called global balance. The classical method to fulfill this balance condition,
is to require detailed balance, which means that the summation goes over the same
terms, i.e.,

pµP (µ→ ν) = pνP (ν → µ). (2.16)

It ensures that the transition rate from µ to ν is the same as the rate from ν to µ.
Note, however, that there are algorithms using the larger freedom granted by global
balance [25].
The transition probabilities need to be chosen properly to sample the wanted distri-

bution. The classical example is the Boltzmann distribution, where at given tempera-
ture T the state µ with some assigned energy Eµ should be generated with probability

pµ = exp
(
− Eµ
kBT

)
/Z, (2.17)

where Z is the partition function and the Boltzmann constant kB = 1 in natural units.
For two states µ and ν detailed balance Equation (2.16) leads directly to an expression
for the transition probabilities

P (µ→ ν)
P (ν → µ) = pν

pµ
= exp

(
−Eν − Eµ

T

)
. (2.18)

From this we can design the transition probabilities P (µ → ν) which define our
Markov process. First we split them in a selection probability g(µ → ν) and an
acceptance probability pacc(µ → ν). g(µ → ν) defines the probability to select the
state ν as the next state in the Markov chain. Here we will always use symmetric
selection such that the inverse pairs of selection probability are equal,12 i.e., g(µ →
12Note that this is not necessary and the freedom to adjust the selection probabilities can lead to very

efficient algorithms, e.g., the Wolff-cluster algorithm for ferromagnets [26]. However, in the work
of this thesis uniform selection probabilities are used always and therefore selection probabilities
will not be elaborated beyond this footnote.
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2.2. Monte Carlo Methods

ν) = g(ν → µ). This leaves the acceptance probabilities, which need to fulfill

pacc(µ→ ν)
pacc(ν → µ) = exp

(
−Eν − Eµ

T

)
. (2.19)

A very common choice fulfilling this relation, is the Metropolis acceptance probabil-
ity [27]

pacc(µ→ ν) = min
{

exp
(
−Eν − Eµ

T

)
, 1
}
. (2.20)

This formulation maximizes the acceptance probability and leads therefore to samples
which change more quickly.

The generalization for arbitrary distributions pµ instead of the Boltzmann distribu-
tion is called Metropolis-Hastings algorithm [28] and uses the generalized acceptance
ratio (again under the prerequisite that the change move µ → ν is chosen with the
same probability as ν → µ)

pacc(µ→ ν) = min
{
pν
pµ
, 1
}
. (2.21)

We will encounter this acceptance probability again in Section 2.2.5.
The Markov process is started with an arbitrary state and iteratively new states are

proposed, which are accepted according to Equation (2.20), such that the transition
probability is correct. The new proposed changes should typically be chosen in a way
that they on the one hand change the system sufficiently but are on the other hand
often accepted. For the Boltzmann example, that means that their energies should
typically be close to each other – especially at low temperatures. However, small
changes cause consecutive configurations µ and ν to be correlated. Therefore, we have
to run this Markov process for some time. Usually time for a MCMC simulation is
measured in Monte Carlo sweeps, which is one change attempt per degree of freedom,
since this is a rough estimate after how many changes two states could be reasonably
decorrelated. Typically this decorrelation does take longer than one sweep. Especially
in the beginning, when the starting configuration is far away from typical states, the
Markov process needs to equilibrate for some time teq, before the samples follow the
correct distribution.

Furthermore, this correlation has to be considered for the calculation of the error
estimates of an observable S, otherwise one would drastically underestimate the un-
certainty. To correct the error estimates for this fact, the integrated autocorrelation
time [19]

τ =
∫ ∞

0

χ(t)
χ(0) dt (2.22)

with the exponentially decaying autocorrelation function

χ(t) =
∫
S(t′)S(t′ + t) dt′ − 〈S〉2 (2.23)
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2. Large Deviations: Background and Numerical Methods

is calculated.13 Since we only need an upper bound for τ , we can reduce noise by inte-
grating only up to the first negative value instead of the whole time series. Then, only
every 2τ -th measurement, which are statistically uncorrelated, are taken into account
for the evaluation. From these data we can determine statistical errors for any quantity
by standard methods for uncorrelated data, e.g., via bootstrap resampling [12–14].

Black Box Approach: Markov Chain of Random Number Vectors One of the most
crucial ingredients of a Markov chain is the change move, which changes a configuration
to another configuration with a slightly different energy E. This protocol is often very
specific to the model. However, it is possible to use model-agnostic change moves,
which do not operate on the realizations of the model, but on the random numbers
used to create the realization in a computer. This is especially useful for growth
models, for which it could be very hard to generate realizations uniformly by change
moves. In this thesis, if a specialized change move operating on realizations of the
model is used, it will be defined together with the model. Otherwise the following
general method [29] is used and will throughout the thesis be referred to as the black
box approach.

ξ1

E1

ξ2

E2

ξ3

E3

ξ4

E4

ξ5

E5

...
change

accept

change

accept

change

accept

change

reject
...

Figure 2.3.: Schematic of the black box Markov chain method. This method changes the
underlying random numbers ξi and generates new configurations from scratch using the slightly
modified random numbers. This is in contrast to the algorithms, which operate directly on
the configuration.

To simulate any stochastic process on a computer, we need some source of random
numbers, due to the deterministic nature of computers. While there are applications
with a need for very high quality random numbers, like the generation of cryptographic
keys, computer simulations only need numbers that appear random and whose corre-
lations have no impact on the simulated problem – pseudo random numbers. Fortu-
nately, there was much work invested to construct pseudo random number generators
which are fast and yield random numbers of sufficient quality. All random numbers of
13Instead of the direct calculation in O(N2), one can use a Fast Fourier Transform to calculate the

autocorrelation function in O(N lnN): χ(t) = F−1 (|F(S(t′)− 〈S〉)|2
)
.
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2.2. Monte Carlo Methods

this work are, for example, created using the Mersenne Twister [30], which is a well
tested algorithm in the context of Monte Carlo simulations. In the remainder of this
thesis pseudo random numbers will be referred to simply as random numbers.14

To create a realization of, e.g., a random walk on a square lattice, one creates T
random integers ξi ∈ {1, 2, 3, 4} corresponding to the four possible directions (north,
east, south or west) in which the i-th step will be taken. Note that the vector of
random numbers ξ is a representation of the random walk equivalent to any other
representation, e.g., the tuple of visited points. While this correspondence may be
not as simple for every model, it is clear that the random numbers used to construct
a realization always define the realization. This is the fundamental idea of a gen-
eral change move. Instead of changing the realization of the model directly, e.g., a
crankshaft move (cf. Section 3.3.1 and Figure 3.5) for the random walk on a lattice,
the vector of underlying random numbers ξ is changed at one entry. The acceptance
or rejection of this change is then determined by an observable E ≡ S acting as an
energy derived from the realization as visualized in Figure 2.3.

This technique, of course, has drawbacks. In the example of the random walk, there
are specialized moves, like the crankshaft move. Typically, these are local moves which
are generally faster to compute, while the change of the t-th entry in ξ will change
the positions of the visited sites for all times τ ≥ t. This might even lead to large
changes in the observable used as an energy and therefore to high rejection rates. In
practice, the changes in the observable are often small and enable a fast evolution of
the Markov chain. On the other hand this method is general and can be applied to,
e.g., growth models, for which change moves preserving the correct statistics might be
hard to devise.

2.2.4. Metropolis Algorithm to Sample the Large Deviation Regime

The previous section already introduced Markov chains with the classical example to
generate Boltzmann distributed configurations using the Metropolis algorithm. Here
we will explore how this method can be applied to obtain the probability density
function of an arbitrary observable S over a large part of its support. That means,
we can get reliable statistics down to very small probabilities, often below p < 10−100.
This explanation is guided especially by Reference [31]. This method is not novel and
has already been applied to various different subjects from scores of DNA or protein
sequence alignments [32–34] and non-equilibrium thermodynamic processes [29] over
properties of random graphs [31, 35–38], to properties of convex hulls of random walks
[39, 40].

First, we need to introduce an energy, which we will identify with the observable
of interest E ≡ S. As should be intuitive from statistical mechanics, lower tempera-
tures correspond typically to lower energies of the system. In the same way an artificial
“temperature” Θ biases the simulated realizations towards lower energies S. The lower

14Especially since it does not play a role if they are pseudo or real random numbers as all introduced
concepts can be applied regardless.
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the absolute value of the temperature, the lower the typical energy. An infinite tem-
perature will lead to uniform, i.e., unbiased samples, since Equation (2.20) will always
be 1 and thus every change will be accepted. This, except for the autocorrelation, is
basically simple sampling. To generate samples of higher energy we can formally in-
troduce negative temperatures. For those Equation (2.20) will always accept increases
and sometimes reject decreases in energy and therefore bias towards higher energies.
In the top left panel of Figure 2.4 the time series for different temperatures are vi-
sualized and it is well visible that different temperatures typically fluctuate around
different values of the energy S.

Now that we have a qualitative understanding of the bias, we have to analyze it
quantitatively to derive the correct reweighting allowing us to obtain the actual un-
biased distribution. At this point we will change the notation slightly to distinguish
the probability Q(c) that a configuration c is encountered in the unbiased ensemble
from the probability P (S) of a configuration with energy S in the unbiased ensemble.
Applying the Metropolis algorithm introduced in the previous section, we arrive at the
equilibrium distribution of the ensemble biased by the temperature, which is known
to be

QΘ(c) = Q(c)e−S(c)/Θ

ZΘ
, (2.24)

where ZΘ = ∑
cQΘ(c) is the partition function of this artificial temperature ensemble.

The connection between the desired distribution P (S) and Q(c) is easily obtained by
summing the probabilities of all configurations which have the specified energy S′

P (S′) =
∑

{c|S(c)=S′}
Q(c), (2.25)

where S′ is a value and S(·) the function to obtain the energy of its argument. In the
following (the same as before), the notation will be a bit more sloppy as we will refer
to the value also with S. Analogously the probability to encounter a value S in the
biased ensemble is

PΘ(S) =
∑

{c|S(c)=S}
QΘ(c) (2.26)

= 1
ZΘ

∑
{c|S(c)=S}

Q(c)e−S(c)/Θ (2.27)

= e−S/Θ
ZΘ

P (S) (2.28)

leading to

P (S) = eS/ΘZΘPΘ(S). (2.29)

Thus sampling the biased ensemble at Θ one obtains the histogram estimating PΘ(S)
which can be transformed into the unbiased distribution P (S) up to the normalization
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Figure 2.4.: Overview over the whole process of the temperature-based sampling scheme.
Different temperatures Θ are visualized with different colors. Top left: time series of the
Markov process. Note that the equilibration time is very short in this system and therefore
not visible on the left side. Top right: simple histogram of the values encountered in the
time series. Note that correlated measurements are already discarded. Middle left: the same
histograms in logarithmic scale. Middle right and bottom left: intermediate steps of the
correction step. Bottom right: normalized distribution over a large part of the support.

21



2. Large Deviations: Background and Numerical Methods

ZΘ. Since the sampling is biased by Θ, the parameter Θ can be tuned to steer the
samples into specific parts of the distribution, e.g., away from the main region of the
distribution, such that good statistics can be obtained for these parts. This is well
visible in the histograms of Figure 2.4.

To obtain ZΘ, one can exploit the fact that the distribution is continuous. Therefore
one needs to sample PΘ(S) at multiple temperatures such that the distributions PΘi(S)
are overlapping. Given two overlapping distributions PΘi−1 and PΘi the ratio of their
free parameters ZΘi−1/ZΘi is obtained by enforcing equality over the overlap

PΘi−1(S)ZΘi−1eS/Θi−1 = PΘi(S)ZΘieS/Θi , (2.30)

In Figure 2.4 this can be seen as the shift of the curves in the fourth picture to result
in the fifths. The technical details how this was achieved honoring the sampling errors
is described in Appendix B.1.
This whole procedure is pictured in Figure 2.4, where all stages are visualized at

an example of the largest bi-edge-connected component of an Erdős-Rényi graph with
fixed number of edges M – a model that will be introduced in Chapter 6.
Since this method needs to simulate different temperatures anyway, a natural im-

provement is parallel tempering, which typically leads to shorter equilibration and
autocorrelation times. It works by simulation of all temperatures Θi in parallel and
exchanging system i and j with an acceptance probability of

pacc = min
{

1, exp
[
(Sj − Si)

(
1

Θj
− 1

Θi

)]}
. (2.31)

This way, the configurations are simulated at different temperatures. At higher tem-
peratures they can overcome energy barriers and cool down into a different valley
when they are swapped back to a lower temperature. Typically this enables a better
sampling of the energy landscape and produces therefore more reliable results. It is
easy to test that this relation actually obeys detailed balance Equation (2.16) and
therefore yields correct results [19]. However, in the studies belonging to this thesis
parallel tempering was not used.

Error estimates of single bins can be obtained by bootstrap resampling [12–14].
Therefore the bootstrap samples are drawn from the initial time series data of the
Markov process and the above evaluation is done for each of, say, 100 bootstrap sam-
ples, from which the single bins are evaluated to obtain error estimates. Generally,
the errors turned out to be very small.
We use this biased sampling method for its simplicity and robustness, though for

some problem instances the equilibration is difficult. For those cases Wang Landau
sampling, introduced in Section 2.2.5, is used instead.

2.2.5. Wang Landau Sampling
The temperature-based sampling scheme above uses an artificial temperature to gen-
erate samples from the tails of the probability distribution. Though the temperatures
need to be chosen carefully to generate samples covering the whole support.
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If the distribution P (S) was known in the beginning, one would know which config-
urations are improbable and should be preferred. A Markov chain accepting changes
with

pacc(ci → cj) = min
{
P (S(ci))
P (S(cj))

, 1
}

(2.32)

would sample every S equally (cf. Equation (2.21)). A configuration with an improb-
able S would likely be accepted, while configurations with probable S are more likely
to be rejected. A histogram H(S) of the encountered S would be flat, leading to the
name of this and similar methods as flat histogram methods.

Of course, P (S) is not known beforehand, but is rather the result we want to obtain.
However, given a good enough estimate g(S) of the distribution, in this context also
often called density of states, we will arrive at an almost flat histogram H, where every
bin is visited often and the statistics is decent over the whole range. The deviations
from perfect flatness can even be used to correct our estimate

P (S) = H(S)
〈H〉

g(S), (2.33)

where 〈H〉 is the average number of entries of each bin. This is known as entropic
sampling [41].
Wang Landau sampling (WL) [42, 43] builds on this technique and extends it by

the ingenious idea to continuously improve the estimate of the (unnormalized) density
of states g(S) during the simulation. In the beginning g(S) is chosen arbitrarily,
for example as uniform g(S) = 1 and a refinement factor f is typically initialized
as f = exp(1). In every iteration the current configuration ci is changed to c′ and
accepted as ci+1 = c′ with

pacc(ci → c′) = min
{
g(S(ci))
g(S(c′)) , 1

}
(2.34)

otherwise rejected, i.e., ci+1 = ci. After every attempt the estimate g is updated as
g(S(ci+1)) 7→ g(S(ci+1)) ·f . Note that due to the multiplication by the constant f > 1
our estimate of the density of states g can approximate the actual distribution very
quickly, even given very large relative differences of, say, a factor 10100.

This is repeated until the auxiliary histogramH(S) fulfills a flatness criterion, which
is typically that the smallest bin has at least 0.8 〈H〉 entries. As soon as this criterion
is fulfilled, the refinement factor is reduced to f 7→

√
f and the auxiliary histogram is

reset. If the refinement factor f drops below ffinal, the algorithm terminates and g(S)
is the estimate for the unnormalized probability density distribution. Consequently,
the value chosen for ffinal determines the quality of g(S).

Note that the acceptance probability changes in every step and does therefore not
obey detailed balance. This introduces systematic errors of the order of ln ffinal.
Though, there are methods to amend this behavior, which will be explained below.
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Wang Landau sampling is most efficient when subdividing the support of S into win-
dows. Each window i generates an estimate gi for a part of the density of states. Monte
Carlo moves which would leave their window are always rejected – though counted for
the corresponding histogram bins [44]. This will sample the density of states in each
window independently, which can be used to parallelize the computation. Further,
smaller windows also reduce the time needed for the auxiliary histogram to become
flat. Those fragments gi need to be stitched together similar to the temperature-based
sampling introduced in the last section. Therefore the windows need to overlap. The
overlap can be used to discard the bins next to the border which are most susceptible
to boundary effects. Bear in mind that this will be only correct, if there is a path
of changes inside this window to generate every configuration of this window, i.e.,
ergodicity must be fulfilled for each window. Otherwise there would be unreachable
configurations which may lead to subtly wrong results.

This leads quite naturally to a further improvement of the algorithm. Since the
windows need to overlap anyway, two configuration in different windows can be pro-
posed to be swapped, if both are in the overlapping region of the corresponding other
window [45]. Such a swap of configuration µ with configuration ν from the windows i
and j is accepted with

pacc = min
{
gi(S(µ))
gi(S(ν))

gj(S(ν))
gj(S(µ)) , 1

}
(2.35)

motivated by detailed balance. This replica-exchange Wang Landau typically leads
to faster equilibration and shorter autocorrelation times and is conceptionally very
similar to the aforementioned parallel tempering for the temperature-based approach.
Though, all problems of this study were well behaved when treated with classical Wang
Landau sampling such that replica-exchange Wang Landau was not used.

Since g(S) will contain very small entries in the tails, such that common data types
can not represent them, this algorithm should be implemented to operate on the
logarithms of g and f . A pseudo code implementation could look like this.

1 def wang_landau(model, f_final=1e-8):
2 H = Histogram()
3 g = Histogram()
4

5 f = 1
6 while f > f_final:
7 while not H.flatness_criterion():
8 S_old = model.score()
9 model.change()

10 S_new = model.score()
11

12 p_acc = exp(g[S_old] - g[S_new])
13
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14 if uniform_random_number(0., 1.) > p_acc:
15 model.undo()
16 S_new = S_old
17

18 g[S_new] += f
19 H[S_new] += 1
20 H.reset()
21 f /= 2;
22

23 return g.normalized()

Technically, to obtain statistical error estimates, one repeats the algorithm a few
times and takes a bin-wise standard error of multiple obtained distribution estimates.

In comparison to the temperature-based sampling scheme there are mainly two
advantages. Sometimes there are barriers in the energy landscape, for example dividing
coexisting phases in systems, corresponding to first order phase transitions in the
artificial temperature ensemble [31]. It is usually hard for the temperature-based
Metropolis changes to overcome them, such that they are stuck on one side for long
periods of time, which leads to long autocorrelation times in the best case and wrong
results in the worst. Also, the region between the two dominating phases are often
hard to sample with the temperature-based approach, leaving gaps in the combined
histograms, which makes it impossible to “glue” the distributions together. Since
Wang Landau sampling operates directly on the energy landscape, it does not suffer
from these problems and can easily sample those deep valleys.

Modified Wang Landau Sampling extended by Entropic Sampling

The two major downsides of Wang Landau sampling are its systematic error in the
order of ln ffinal and the flatness criterion, which makes it hard to estimate the runtime
of the program. Both problems are addressed in References [46, 47], which introduce
another schedule to change the value of f during the simulation. The first phase is
quite similar to the original Wang Landau algorithm, but it performs a fixed number
of sweeps and requires instead of a flatness criterion only that Hi > 0 ∀i before f is
reduced. The Monte Carlo time t is measured as the number of performed sweeps.
As soon as ln f < 1/t, the second phase starts and f is updated after every sweep to
ln f = 1/t. This means that the total number of sweeps is fixed by ttotal = 1/ ln ffinal.
Reference [47] shows that this schedule does in fact eliminate the saturation of the
error.

Since detailed balance is still not fulfilled, ffinal needs to be quite small to yield
good results, which often takes too much computing power in practice. For this study
ttotal = 105 could be obtained in a reasonable amount of time. But the estimate of gwl
obtained by this method can be used to perform the aforementioned entropic sampling
[41, 48]. The estimate for the density of states gwl is not altered during the entropic
sampling, which grants detailed balance and eliminates all systematic errors. After a

25



2. Large Deviations: Background and Numerical Methods

10−6

10−5

10−4

10−3

10−2

10−1

100

104 105 106

phase 1 phase 2 phase 3

ln
f

t

f

Figure 2.5.: Schedule of the used modified Wang Landau sampling. The first phase sees an
exponentially decaying refinement factor f , the second phase is a power-law decay as suggested
by Reference [46] and the third phase performs entropic sampling [41, 48], i.e., the estimate g
is not changed anymore, corresponding to a constant refinement factor f = 1.

set amount of sweeps, here 2ttotal, the collected histogram H is used to get a better
estimate of the density of states g using Equation (2.33), i.e.,

g(S) = H(S)
〈H〉

gwl(S).

A typical schedule with ln ffinal = 10−6 of the modified Wang Landau sampling is
shown in Figure 2.5.

Comparison to the Temperature-Based Scheme

To demonstrate the quality of the introduced algorithms, we sample a random walk
on a square lattice with T = 256 steps and handle the area A of its convex hull
(cf. Section 3.3.2) as the energy. For this simple model the maximum area of the
convex hull Amax is reached by an “L”-shaped configuration with Amax = 1

2(T/2)2 =
8192. There are 8 configurations of maximum area due to the lattice symmetries
and 4256 ≈ 10154 total configurations, because at each of the 256 steps the walk can
choose 1 of 4 directions, which we can use to calculate the probability of P (A =
8192) ≈ 10−153. Since the bins have some width, we can not reproduce this value
exactly, but we can expect minA {P (A)} & 10−153. In fact, a comparison in Fig. 2.6 of
the temperature-based approach and the two Wang Landau sampling variants shows
that all distributions match both the expectations and each other rather nicely. The
unmodified Wang Landau algorithm shows no strong deviations in this test, but uses
far more time in the rightmost window than the improved Wang Landau sampling.
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is caused by the lattice structure, where simply no larger realizations exist. The insets zoom
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3. Convex Hulls of Random Walks

This chapter is about the properties of convex hulls enclosing the trajectory of random
walks. The convex hull C of a set of points P is the smallest convex polytope including
all points of the set P, which consists in this case of all points the random walk visited.
This is a field of mostly mathematical interest but with applications in ecology, where
the random walk is interpreted as the trajectory of an animal1 and the convex hull is
an estimate for its home range [53–55].

Since the random walk is arguably one of the most simple models of stochastic
geometry and convex hulls are one of the most simple geometrical objects suited to
characterize point sets, their combination lends itself nicely to mathematical scrutiny,
though it is far from trivial. The convex hull of a stochastic process connects interest-
ingly extreme-value statistics with geometry, since a convex hull consists of – in some
sense – the extreme points of the point set (cf. Section 3.1.1).

We will start this chapter with a non-exhaustive review of previous work studying
the convex hulls of random walks in Section 3.1. We will especially focus on one
publication, which introduced an analytical approach simple enough to be explained
on a few pages of this thesis in Section 3.1.1. Using this background, we will proceed
to formulate our research question in Section 3.2. To study this question, we will
introduce all random walk models under scrutiny in Section 3.3.1 and computational
tools to construct convex hulls in Section 3.3.2. Finally Section 3.4 gives a short
overview over the results published in Articles A.1 to A.3 about this topic.

3.1. Current State of Research
The two properties of the convex hulls of random walks which attracted most interest
in the past and also in this study, are the perimeter and the area of convex hulls or
their higher dimensional analoga. While the mean perimeter for planar random walks
in the limit of large walk lengths is known since about 40 years [56], the mean area is
only known since 25 years [57]. 10 years ago a simpler method to calculate both area,
perimeter and more observables, which is also applicable, e.g., to the joint convex hull
of multiple independent walks and can, in principle, be extended to higher dimensions,
was published [58, 59]. This method is based on Cauchy’s formula, which relates the
support of a closed curve to the perimeter and area enclosed by the curve. A quick

1In fact, the first mention of a random walk by this name was in 1905 in a letter to Nature by Karl
Pearson [49–51], who wanted to use it as a model for mosquitos. Interestingly, the solution to his
question was already found 25 years prior by John William Strutt (also known as Lord Rayleigh).
However, the phenomenon of Brownian motion was of course known far before. The first rigorous
study of random walks on lattices is to be attributed to Georg Pólya [52].
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3. Convex Hulls of Random Walks

overview over the idea of this approach will be shown in Section 3.1.1. Even more
recently a general closed formula for the mean hypervolume and surface in arbitrary
dimensions was found [60]. As was an exact combinatorial formula for the mean
volume of finite length walks with Gaussian distributed step lengths [61]. Despite this
consistent progress regarding the mean values, higher moments seem to be out of reach
– in fact, there is only one exact result known for the variance of Brownian bridges [62],
which are random walks with the further constraint that the last step needs to end on
the initial starting point, i.e., the walk needs to be closed. Further, only bounds on
the variance are known, e.g., for the perimeter of walks with identically, independently
distributed jumps of finite variance σ2

X + σ2
Y we have Var(LN ) ≤ π

2N
(
σ2
X + σ2

Y

)
[63].

It should also not be unmentioned that the perimeter and area of the convex hull are
not the only quantities of interest. For example the number of facets (see Section 3.3.2
for a precise definition) of the hull or the number of points which constitute the hull
were of interest since almost 60 years [64].

For a more throughout review of the approaches used, especially by some of the
earliest publications mentioned here, Reference [59] is highly recommended.

Besides the pure mathematical interest, as mentioned, there are also applications
to animal movement, e.g., as a model for the spatial extend of animal epidemics.
In Reference [65] a disease in the spirit of the SIR model [66] is modeled. SIR is a
simple mean field like model of coupled differential equations, where a portion of the
population is either susceptible to, infected by or recovered from (and then immune
to) a disease. Often it is also studied (discretized) on complex networks [67, 68], where
the network topology determines which individuals can infect each other.

Here, a variant is modeled using a two dimensional branching Brownian motion2

similar to the one shown in Figure 3.1, where a Brownian motion can branch into two
Brownian motions or perish with some probability. This model assumes a uniform
distribution of individuals on the plane. The branching represents the infection of a
susceptible individual by another infected individual with probability b per timestep
(or bdt for the continuous case) and the perishing represents the recovery with prob-
ability γ.

The convex hull of this branching Brownian motion is used as an estimate for the
area over which the infection has spread. This is not a sensible model for human
behavior, since the movement patterns of humans can not be modeled by Brownian
motion well, but are dominated by small-world effects, e.g., air travel allows non-local
spreading of the disease (see also Chapter 6). Nevertheless for animal or even plant
diseases, where the infection is mediated by insects, this is reasonable.

The classical SIR model has a parameter R0 = βN/γ, where β is the infection rate
and γ the recovery rate, which indicates its behavior. In the thermodynamic limit

2Unfortunately, the word “Brownian motion” is used for multiple processes in the literature and
can mean either the original movement of small particles caused by molecular dynamics, a time
continuous stochastic process also known as Wiener process or a time discrete random walk with
a Gaussian jump length distribution, also called Gaussian random walk. Since the realizations of
the last two are statistically identical, this should not cause too much confusion in this chapter,
despite both processes being referred to with the same name.
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Figure 3.1.: Example of a branching Gaussian walk, a time discrete version of the model used
in Reference [65]. Different individuals are visualized with different colors. At the point of in-
fection the walk branches, marked with a dot. When the individual recovers, the corresponding
branch ends, marked with a circle. (Some colors are used twice.)

of N → ∞ individuals, the disease will vanish before infecting O(N) of the system
for R0 < 1, which is called the subcritical phase. For the supercritical phase R0 > 1
the disease will infect a finite fraction of the population. Dumonteil et al. showed
in Reference [65] that the same behavior is observable for the area and perimeter of
the convex hull around the branching Brownian motion with the same critical point
R0 = b/γ = 1. Moreover, they determine the mean perimeter and area, using the
approach based on Cauchy’s formula (cf. Section 3.1.1), in the supercritical regime.
They show that the convex hull grows ballistically, i.e., the perimeter grows linear in
time and the area quadratically in time, which means that the region where the disease
is spread grows far faster than the underlying diffusive process might have suggested.

Another recent application of convex hulls around random walks is to differentiate
phases of intermittent stochastic processes [69]. In nature there are many movement
processes, which change their phase in an intermittent way, e.g., bacteria show “run
and tumble” [70]3 phases, i.e., “run” phases in which the change of direction is smooth
and “tumble” phases in which the change of direction is abrupt. Note that Reference
[69] cites more occurrences of this intermittent behavior, like animal foraging, which
changes between fast movement and slow searches, and many occurrences in micro-
biology. It is important to differentiate between the phases of intermittent processes,
to not reach wrong conclusions, e.g., interpreting an intermittent change of diffusive
and ballistic phases in the trajectory of a particle as anomalous diffusion. Reference
[69] proposes a method utilizing the local convex hulls to discriminate different phases.
“Local” means here that of the time series of positions x(t), for every point its τ pre-
decessors and successors are used to calculate their joint hull around 2τ+1 points. An
example where two local convex hulls are visualized for a small part of an intermittent
process is shown in Figure 3.2. Of these hulls the volume and diameter, i.e., the largest
distance between any pair of points, are calculated. This transforms a d-dimensional

3In the cited paper called “run and twiddle”.
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time series into two 1-dimensional time series. Of course, τ must be chosen carefully.
A too small value of τ will result in greater noise, whereas a too large value might be
longer than a phase lasts and therefore obscure it. To distinguish two phases, threshold
values of the two observables are proposed. A comprehensive validation on different
types of simulated intermittent processes shows the viability of this approach.

Figure 3.2.: Example of intermittent behavior detectable by local convex hulls. This example
is a realization of a diffusive random walk which switches after T1 = 100 steps to the anomalous
diffusive loop-erased random walk (cf. Section 3.3.1) for T2 = 100 steps. The two local convex
hulls are constructed at times t = 50 and t = 150 with τ = 25 and visualize nicely very
different behavior, which can be used to differentiate the two phases.

While most of the above introduced work is of analytical nature, there are also
a few prior publications studying the convex hulls of random walks by simulations.
Especially noteworthy are two publications addressing the lack of results for higher
moments by numerically obtaining large parts of the distribution of standard random
walks in the plane [39] and multiple standard random walks [40]. These publications
are important to the thesis at hand since they not only use similar methods, but also
have similar aims as some publications constituting this thesis.4 Both publications fo-
cus their work on large-deviation properties of the distributions of area and perimeter
of convex hulls of random walks. This way not only the behavior of multiple random
walks [58] was confirmed, but also numerically a large deviation principle (cf. Sec-
tion 2.1) was established. Prompted by this study, Reference [71] proved the existence
of a large deviation principle for a class of jump distributions rigorously.

3.1.1. Analytic Approach with Cauchy’s Formula

Here we will explore the fundamental ideas of the approach followed in References
[58, 59] to obtain analytically the mean perimeter and area of planar convex hulls of
random point sets. This chapter will allow us to look into some of the connections of
this problem to seemingly unrelated branches of mathematics and therefore establish

4Both of these References [39, 40] were published by members of the same working group I am part
of and Reference [40] was even funded by the same project funding me.
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the background of this problem. This chapter will borrow the notation of the review
article Reference [59]. The first author of Reference [59], Satya N. Majumdar, is also
coauthor of three of the publications belonging to this thesis.5

The central piece of this calculation is Cauchy’s formula [72] named after Augustin-
Louis Cauchy6, also called Cauchy-Crofton formula named after Morgan Crofton, who
applied the originally purely geometric formula to stochastic problems. Cauchy’s for-
mula connects the support function M(θ), i.e., a one dimensional projection, of a closed
convex curve C to its perimeter L and area A via

L =
∫ 2π

0
M(θ) dθ (3.1)

A = 1
2

∫ 2π

0

[
M2(θ)−

(
M ′(θ)

)2] dθ, (3.2)

where M ′ is the first derivative. The value of M(θ) at some angle θ is the extreme
value of a projection of C to a line with angle θ through the origin, i.e.,

M(θ) = max
(x,y)∈C

{x cos(θ) + y sin(θ)} . (3.3)

0

r

r

M
(θ
)
=
r(
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θ
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·
·

·

Figure 3.3.: The support function M of a circle with radius r standing on the coordinate
origin.

We will start with a simple example from Reference [59] to test this with a closed
convex curve, whose perimeter and area we know. Figure 3.3 shows a circle and its

5I had the opportunity to stay for the September 2016 in Orsay near Paris at the same institute, the
Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS).

6Augustin-Louis Cauchy was a very productive mathematician such that the term “Cauchy’s formula”
does not name a unique theorem – in fact the English Wikipedia has a “List of things named after
Augustin-Louis Cauchy” with 48 entries at the time of writing (20.9.2018).
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support function M(θ). If we put this into Equations (3.1) and (3.2), we arrive at

L =
∫ 2π

0
r (1 + sin θ) dθ = 2πr

A = 1
2

∫ 2π

0
r2 (1 + sin θ)2 − r2 cos2 θ dθ = πr2

which are the values we would expect for a circle. A nice sketch of a proof, requiring
only basic geometric and trigonometric understanding, for polygonal curves (which
can be generalized to edges of infinitesimal length, i.e., continuous curves) is given in
the appendix of Reference [59].
Since a convex hull is a smooth polygon, this formula could already be used for

single instances of convex hulls. Note that the support function M(θ) of a convex hull
of a point set P can be simply written as

M(θ) = max
(xi,yi)∈P

{xi cos(θ) + yi sin(θ)} . (3.4)

The maximum projections will always be the projections of the vertices which are part
of the convex hull. However, we are not interested in the perimeter of single hulls,
but in the mean perimeter 〈L〉 over an ensemble of random realizations. Apparently,
the xi and yi will become random variables in this case and consequently the support
M(θ), too. The average over all realizations of the ensemble 〈·〉 is a linear operation,
hence we arrive at

〈L〉 =
∫ 2π

0
〈M(θ)〉 dθ (3.5)

〈A〉 = 1
2

∫ 2π

0

[〈
M2(θ)

〉
−
〈(
M ′(θ)

)2〉] dθ. (3.6)

The maximum operation over a random variable in Equation (3.4) is then a sure sign
of a relation to extreme-value theory. Using extreme-value theory one can derive a lot
of interesting properties about random convex hulls for whole classes of random point
sets. Here, we will not dive deeper into this topic. A more in depth look can be found
in Reference [59].
For the case of Brownian motion the x and y components of the steps are iden-

tical and independently Gaussian distributed. Since the walk with this jump dis-
tribution is isotropic, considering the point (x(τ), y(τ)) at time τ , we see that the
projection z(τ) = x(τ) cos(θ) + y(τ) sin(θ) is also a one dimensional Brownian motion
itself. Especially, due to the isotropy, its support is statistically independent of θ, i.e.,
〈M(θ)〉 = 〈M(0)〉 = 〈maxτ {z(τ)}〉. Therefore Equation (3.5) simplifies to

〈L〉 = 2π 〈M(0)〉 . (3.7)

The distribution function of the maximum of Brownian motion with T steps is known
explicitly as P (x ≤M) = erf

(
M√
2T

)
from which we can calculate the mean 〈M(0)〉 =
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√
2T
π and in turn with Equation (3.5) 〈L〉 =

√
8πT . A slightly more involved, but in

principle the same, procedure can be used to obtain 〈A〉.
This method is applicable to any random point sets whose distribution of the support

function, or at least the first moment, is known (and the second to obtain the area). In
Reference [58] it was therefore applied to the joint hull of multiple walkers. However
for many random walk models, e.g., self avoiding-walk models, which avoid their past
trajectory, not even the first moment of the support function M(θ) is known exactly,
motivating the numerical studies Articles A.2 and A.3.

3.2. Research Question
The previous numerical work leaves open two obvious questions. The numerical study
Reference [39] proposes a scaling of the whole distribution of perimeter L and area
A in the same way as their respective means, i.e., L ∝ T ν and A ∝ T 2ν , and shows
numerical evidence in two dimensions. The same article also gives an argument for
the behavior of the rate function (cf. Section 2.1) in two dimension. This leads to the
research question:

Can the predictions about the scaling and rate function of the distri-
bution of the properties of the convex hull of two dimensional standard
random walks be generalized to standard random walks in higher dimen-
sional spaces?

This question is the fundamental motivation of the research project which resulted in
the publication of Article A.1.

Considering the wealth of literature about more complicated random walk mod-
els and the lack of results covering their convex hulls, the second question follows
naturally:

Can the predictions about the scaling and rate function of the distri-
bution and the mean values and variances of the area and perimeter of
the convex hull of standard random walks be generalized to other types of
random walks? What are the mean values and variances of the area and
perimeter for the convex hulls of self avoiding walks?

The answers to these questions are far less clear than the answer to the first question.
While standard random walks do not change their behavior at higher dimensions, the
behavior changes drastically for random walks which interact with their past trajectory.
Since there are many different types of random walks, the study of a selection of them
seems worthwhile. This motivated the research projects which resulted in Articles A.2
and A.3.

3.3. Models and Methods
This chapter will introduce the methods used in Articles A.1 to A.3 in a far more
throughout manner than it is possible in an article. Therefore some fundamental
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concepts will be introduced and a lot of examples will be given. Some are not directly
applied in the published papers, but give an overview over the topic and are included
for this reason. While we already showed one approach to handle them mathematically
in Section 3.1.1, we will focus on the handling of random walks and convex hulls within
a computer in Sections 3.3.1 and 3.3.2.

3.3.1. Random Walks
One possibility to define a time-discrete random walk is using its T step vectors δi of
dimension d such that the position of the random walk at time τ is given as

x(τ) = x0 +
τ∑
i=1
δi, (3.8)

where x0 is the starting position, e.g., the coordinate origin. With this notation a
random walk is uniquely defined by a tuple of steps (δ1, . . . , δT ) and the points it
visited are the elements of the set P = {x(0), . . . ,x(T )}.
Depending on the type of the random walk different constraints apply to the steps

δi and the resulting walk will have different properties. As mentioned in Section 2.2
we need to be able to introduce small changes into a given realization of a walk to
enable Markov chain Monte Carlo sampling. The naive method is to replace one of
the step vectors δi with a different step vector δ′, which is equivalent to the black box
approach (cf. Section 2.2.3). Indeed, this naive method turned out to be sufficient for
some studied types of random walk. We will introduce specialized change moves if
they are better suited for specific walk types in their respective sections.
In the following paragraphs all types of random walks relevant for this study will

be defined, visualized and some particularities discussed. An important property is
that most simple random walk models are characterized by a single exponent ν, which
describes the growth of the end-to-end distance R as a function of the number of steps
taken T , i.e., R ∝ T ν . Its inverse is the fractal dimension df = 1/ν of the walk.
Intuitively, it governs how fast the random walk leaves its starting point. After the
introduction of the different random walk models of interest for this study, we will look
into the exponent ν in more detail and compare it between all introduced random walk
models.

Lattice Random Walk

The lattice random walk (LRW) is a walk on a square lattice (or hypercubic lattice
in higher dimensions d) with step length 1. This is usually just called ‘random walk,’
but here a different notation is chosen for clarity. At each time step the walk proceeds
to one of its 2d neighbors. An example is pictured in Figure 3.4 and a partial deci-
sion tree visualizing the probabilities to construct a specific configuration is shown in
Figure 3.6(a). This walk converges to Brownian motion in the large T limit.
For the simple lattice random walk, there are more sophisticated move sets than

our naive approach mentioned above that allow a MCMC simulation, especially local
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GRW

LRW

SKSAW

SAW

LERW

TSAW

Figure 3.4.: Examples for different types of random walks with each T = 200 steps in d = 2.
Pictured are lattice random walk (LRW), Gaussian random walk (GRW), self-avoiding random
walk (SAW), loop-erased random walk (LERW), smart-kinetic self-avoiding walk (SKSAW)
and “true” self-avoiding walk (TSAW), which will be explained in the following sections.
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moves which only change a few point positions x(τ), such that they usually can be
performed faster than the naive method from above. Two examples of local moves are
pictured in Figure 3.5. However, since for this study we are interested in the convex
hull, which is a global property, we have to consider every single point after every
change move such that local changes have only very minor benefit in this case. So for
the simulations performed in context of this thesis, the naive changes of the black box
approach turned out to be sufficient and not to slow down the simulations noticeably.

Figure 3.5.: Examples for two different change moves. The classical local move, which changes
only one entry of the set of visited points P (left) and the crankshaft move, which always
changes two entries of the set of visited points P (right).

Gaussian Random Walk

The Gaussian random walk (GRW), also often just called ‘random walk,’ lives in a
continuous space. At each time step its next position is determined by a displacement
vector drawn from an uncorrelated multivariate normal distribution with zero mean
and width of σ = 1. An example is pictured in Figure 3.4. Note that this construction,
despite being time discrete, leads to the same distribution of realizations as the time
continuous Brownian motion. This walk is the only one studied in this thesis which
does not live on a lattice. While the lattice random walk converges also to a Brownian
motion for large values of T , the lattice structure usually still has influence at finite
system sizes [39], called finite-size effects. On the other hand, the lattice structure
simplifies the self-interacting walks introduced in the following sections greatly.

Self-Avoiding Walk

The self-avoiding random walk (SAW) is like the lattice random walk, but it may not
visit any lattice site twice. This ensemble is defined by the uniform occurrence of all
configurations which fulfill this criterion. For clarity, a complete enumeration of all
configurations of length T = 5 (without rotational symmetric configurations) is shown
in Figure 3.6(d) and an example for T = 200 is pictured in Figure 3.4.
This poses some difficulties when sampling self-avoiding random walk configurations.

The naive and wrong approach would be to draw one random step after the other and
in the case that this step would step onto the past trajectory, discard the last step
and try a different one. This method has the problem that it quickly leads into traps,
where it is not possible to continue the walk, since all neighboring sites were already
visited. But more importantly, even without the traps, it does not generate the desired

38



3.3. Models and Methods
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Figure 3.6.: An incomplete tree of decisions to generate a T = 5 random walk of the specific
type. Rotational symmetric configurations are ignored.
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distribution of walks. To sample uniformly from the ensemble of self-avoiding random
walks, each configuration should be drawn with the same probability. The naive
method prefers some configurations above others. In Figure 3.6(c) a decision tree of
the naive method is shown, to clarify this problem. There it is clearly visible that the
closely winded configurations on the top half of the image have a higher probability
to be generated than the configurations shown on the bottom half.

To sample uniformly from all self-avoiding random walk configurations, the simplest
correct method would be to take one random step at a time and discard all steps so
far, if the next step would visit an already visited site. Since there is a chance at every
step to visit a forbidden site, the chance to only step on free sites decays exponentially
in the steps taken T , which leads to an exponential running time of this algorithm to
generate a self-avoiding random walk of length T .

This can be mitigated by using Markov chain Monte Carlo based sampling methods.
Starting from an initial realization, a typical Markov chain Monte Carlo simulation can
be performed. In this study two kinds of trial moves are performed, namely the same
naive changes mentioned earlier and pivot moves [24, 73]. The latter are performing a
symmetry operation of the lattice (rotations, mirroring) around one randomly chosen
pivot site as visualized in Figure 3.7. On the one hand, these changes are quite
large and will often result in overlaps in which case the change is rejected. On the
other hand, if it is accepted, the large change decorrelates subsequent samples quite
fast. There are estimates for the ratio f of pivot moves which result in a valid walk
configuration to scale as f ∝ T−p with the number of steps T and p ≈ 0.19 [73]. This
typically results in a polynomial scaling in T of pivot move attempts needed to arrive
at a decorrelated state. This Markov chain Monte Carlo approach can be directly
combined with both large deviation sampling techniques introduced in Section 2.2.
Therefore, change moves which do not lead to intersections and would be accepted by
the pivot algorithm are rejected with probability 1− pacc.

Figure 3.7.: Example of one pivot change. The used symmetry operation is −π/2 rotation
around the red marked pivot site.

To create the initial realization the dimerization [24, 74] method can be used, which
still has an exponential worst-case time-complexity but is in practice much faster than
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the naive approach. Dimerization is a divide an conquer approach, where two short
self-avoiding random walks are combined to a longer self-avoiding random walk. If an
intersection is detected, everything is discarded and the construction is started anew.
The second option is to start from a straight walk, which is surely not self intersecting
and equilibrate it using the above mentioned change moves. For our temperature
based large deviation sampling scheme, depending on the walk length T and artificial
temperature Θ the efficiency of these methods varies. In Article A.2 we started with
a realization created by dimerization.
For this study we chose a rather simple implementation of the pivot algorithm. The

state of the art method to perform pivot moves is based on an ingenious datastructure
called SAW-tree [75, 76]. This allows single MCMC change moves to be performed in
time O(logN). In the context of this work, the time complexity of our MCMC change
moves is dominated by the calculation of the “energy” inO(N logN) (cf. Section 3.3.2).
Thus, a simple implementation using a hash set suffices. After choosing the pivot, all
sites belonging to the shorter end are erased from the hash set, transformed, tested
against the remaining entries of the hash set and added to the hash set if no intersection
arises. All these operations, and undoing them in case of rejection, have an amortized
time complexity of O(N) and should therefore not bottleneck the simulations.
In higher dimensions the self-avoiding random walk has more directions in which it

can go and thus more space to explore. Since its trace is more “diluted” it does not
interact with itself as strong. Indeed for d > 4 the behavior is statistically the same
as the lattice random walk, in the sense that the exponents ν are the same. Since for
even higher dimensions the exponent does not change anymore, d = 4 is called the
upper critical dimension of the self-avoiding random walk.

Loop-Erased Random Walk

The loop-erased random walk (LERW) was invented as a simple version of the self-
avoiding random walk, in the hope that it would show the same statistical properties
as the self-avoiding random walk [77]. This was mainly prompted since at that time
the simulation of self-avoiding random walks was still not efficiently possible, e.g.,
neither PERM nor the pivot algorithm were invented. This hope, however, was not
fulfilled, as the loop-erased random walk shows a different exponent ν and is therefore
fundamentally different from the self-avoiding random walk. Nevertheless, it found
some applications for some other seemingly unrelated problems [78], e.g., the uniform
generation of spanning trees7 can be mapped onto a loop-erased random walk on the
graph. This correspondence was used to transfer known properties from one object to
the other [79].
The loop-erased random walk is a simple lattice random walk, but when it crosses

an already visited site i all steps since the last visit of i are discarded, i.e., the loop
is erased. This is shown for a small example in Figure 3.8 where the gray nodes of

7A spanning tree of a graph is a subgraph without loops, which contains every node of the original
graph.
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a lattice random walk are erased to form a loop-erased random walk. After the loop
erasure, the walk does not show any crossings. An example is pictured in Figure 3.4.

Finding a change move for this type of walk is not trivial. The naive change of the
lattice random walk might lead to new loops and can therefore lead to shorter walks.
Instead, we use the black box approach (cf. Section 2.2.3). The random number vectors
ξi have no fixed length and new random numbers are generated if new loops are erased.
Since there are also changes leading to a loop not being erased, not all random numbers
are used for every realization. To maintain high acceptance rates, the changes should
not introduce too much difference between consecutive realizations. Therefore it is
necessary that we maintain the unused random numbers at the end of ξi, i.e., ξi only
grows and never shrinks. This should reduce the amount of change happening at
one change move. Note that the loop erasure dynamic can lead to large changes in
the realizations. For example, imagine a change would lead the T -th step to visit
the origin again. The loop erasure will erase every single step and the construction
basically starts from scratch. Despite this apparent difficulty, the black box approach
works remarkably well in practice.

Figure 3.8.: Example of a loop erasure. The erased loop is shown in gray and the remaining
loop-erased random walk in black.

To detect crossings in constant time, we use a hash set of all currently occupied
sites. Maintaining it, requires to delete O(N) entries at each loop erasure, such that
the time complexity of this change move is similar to the self-avoiding random walk
O(N).

Analogous to the self-avoiding random walk, loop erasure becomes rarer in higher
dimensions. Above the upper critical dimension d = 4 it becomes equivalent to the
lattice random walk.

42



3.3. Models and Methods

Smart Kinetic Self-Avoiding Random Walk

The smart-kinetic self-avoiding random walk (SKSAW) [80, 81] is a growing random
walk which does not enter occupied sites and avoids getting trapped in loops. This
also means that it is similar to the naive and wrong method without rejection first
mentioned for the self-avoiding random walk above. The resulting probabilities of the
configurations differ therefore from the self-avoiding random walk. First, configura-
tions in which the walk is trapped, which are allowed for the self-avoiding random
walk as long as no intersection occurs, do not occur in the smart-kinetic self-avoiding
random walk, leading to relatively more configurations with large holes in them. While
this effect might suggest that smart-kinetic self-avoiding random walk are on average
more spread out, a second effect dominates this behavior. This stronger effect can
best be understood when looking at the (partial) decision tree in Figure 3.6(c). In this
tree it is visible that the distribution of the configurations is not uniform and closely
winded configurations are more probable than for the self-avoiding random walk. This
leads to a more compact form, which is also reflected in the exponent ν = 4/7 (for
d = 2), which is smaller than for the self-avoiding random walk. An example of a
smart-kinetic self-avoiding random walk is pictured in Figure 3.4. Since it is quite
hard to get trapped in d ≥ 3, it is conjectured that this walk behaves the same as the
lattice random walk above the upper critical dimension d = 3.
An algorithm to create a realization needs to ensure that the walk will not trap itself.

One can think of it as a strategy for the game Snake.8 A naive implementation could
determine with a simple depth-first search [82] or some heuristically guided search,
e.g., A* [83], if a point “outside” is reachable from the planned site of the next step.
In d = 2 this has a worst case runtime quadratic in the length of the walk.

There is a more clever algorithm [81] requiring only local information which has a
constant time complexity per step, i.e., linear in the length of the walk. For this more
sophisticated algorithm, we need to save the winding angle wi at every occupied site
i. This is just a sum over all turns the walk took, where a left turn is −1 and a right
turn is +1.

The basic idea is that trapping can only occur if we take a step into a loop. If all
sites (a, b, c, d, e) as defined in Figure 3.9 are empty, we can step on any of (a, b, c)
and still escape. If some of them are occupied, we need to take a step which does not
lead into the loop. To determine which step leads into a loop, we can use the winding
angle. If the winding angle on the current site is larger than on the occupied site, the
loop is on the right-hand side and vice versa. An example of this case is shown in
Figure 3.9(b). Using this, the following algorithm will avoid getting trapped:

8While the game concept exists since 1976 (Blockade), it was popularized by the inclusion on Nokia
cellphones since the nineties.
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1. Start at x0 and do a random step

2. Look at the 5 sites in front a, b, c, d, e defined in Figure 3.9 and choose the first
fulfilled option

• if none is occupied, do a random step
• if exactly one of a, b, c is not occupied, step on it
• if b is occupied and both a, c are not

◦ ws > wb: step on a
◦ ws < wb: step on c

• if d and e are not occupied, step on a random not occupied one of a, b, c
• if d and e are both occupied (a, b, c will all be not occupied)

◦ ws > wd > we: step on a
◦ wd > ws > we or we > ws > we: step on b
◦ ws < wd < we: step on c

• if d is occupied and e is not
◦ ws > wd: step on a
◦ ws < wd: step on c or b

• if e is occupied and d is not
◦ ws > we: step on a or b
◦ ws < we: step on c

3. Repeat 2. until the walk reaches the desired length.

All cases which are not explicitly mentioned are only possible if the walk is already
trapped and thus do not occur.
Using this algorithm, it is easy to do simple sampling of realizations. But it is tricky

to apply a Markov chain based sampling scheme. The pivot algorithm mentioned
above is not applicable, since it would obviously sample the self-avoiding random walk
ensemble. Simple changes as used in the lattice random walk can lead to crossings later
in the walk, such that one change can result in many necessary changes later to avoid
self-crossing. We approach this problem with the black box approach as explained
in Section 2.2.3.9 In contrast to the loop-erased random walk, where this protocol
works nicely, the SKSAW is more susceptible to changes in the random numbers ξ.
Consider that changing a step can shift the whole walk after that point. Therefore,
many following steps might be invalid, as they might cross the walk after the shift.
Therefore each of those crossing steps would need to be changed, leading to a cascading
aggravation of this effect. A replacement of all random numbers ξi corresponding to
the now invalid steps will introduce too much change to generate atypical realizations

9The image Figure 2.3 does actually show the evolution of a smart-kinetic self-avoiding random walk.
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efficiently. Therefore, we will only change one random number, but interpret the
remaining random numbers dependent on the realization, i.e., the random numbers
do not determine the direction of their step directly, but are used to choose from the
possible directions, i.e., the directions that will neither lead into a trap nor onto an
already visited site. While this protocol is still not capable of generating instances over
the whole support of the distributions p(A) and p(L), like it is feasible for self-avoiding
random walks and loop-erased random walks, we can reach across a reasonable large
range and obtain the probability density down to probabilities smaller than 10−200.
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Figure 3.9.: Important concepts for the SKSAW. The head of the walk is labeled as s, its front
neighbors a, b, c, d, e are important to determine which step to take next to avoid trapping.
The winding angle of every site is written inside the visited sites. (a) A walk where no trapping
is possible in the next step. (b) A walk where the a step on any other site than a leads into a
trap. The “only d occupied” rule and the winding angle at site s being larger than at site d,
i.e., ws > wd, instructs us to step on site a.

“True” Self-Avoiding Walk

The “true” self-avoiding random walk (TSAW),10 introduced in Reference [84], is dif-
ferent from the self-avoiding walks introduced before, in that it may step on already
visited sites, although it is discouraged dependent on an avoidance parameter β. If
10The reason for the very confident name is, at least partially, that it was one of the first models of self-

avoiding walks generated by a growth process, predating the smart-kinetic self-avoiding random
walk. The authors wanted to show that the behavior of a growth process, which is intuitively
coupled to the “walker” part of the name, is very different from the combinatorial interpretation
of the self-avoiding random walk. So in contrast to the self-avoiding random walk, which is more
a polymer than a walk, this growth model is a “true” walk.
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a site i is visited ni(τ) times after τ steps, the “true” self-avoiding random walk will
step on site i with probability p(i, τ) = e−βni(τ)/Z(τ), where

Z(τ) =
∑

i∈neighbors
e−βni(τ)

is just a normalization factor. There are two edge cases of this type of walk. First,
β = 0, where it will not avoid visited sites at all and is identical to the lattice random
walk. And second, β →∞ where it will only step on itself, if it is trapped. For large
β it behaves therefore, except for the strategy to escape from traps, like the smart-
kinetic self-avoiding random walk, which is reflected in the large deviation behavior
(cf. Article A.3). A decision tree, where this similarity can also be observed, is shown
in Figure 3.6(b). An example for β = 1 is shown in Figure 3.4.

Since this type is also defined by a growth process, we apply the black box approach
to construct the Markov chain. We use for each step one random number to ensure
only small changes if one underlying entry of ξ is altered. Technically, of the 2d
neighboring sites, we step on site j ≤ 2d, such that j is minimal and fulfilling

ξk ≤
j∑
i=1

e−βni/Z

dependent on the random number for the k-th step ξk.
In References [84, 85] it was shown that the upper critical dimension of the “true”

self-avoiding random walk is d = 2, and therefore ν = 1/2 with logarithmic corrections.

Scaling Exponents

As mentioned before, a central quantity to characterize a random walk is the distance
typically covered by a walk with T steps. For the one dimensional case it is trivial
to calculate. Since the strictly self-avoiding walks11 can not turn around, obviously
ν = 1.
For the lattice random walk the calculation is also straight forward. Let the incre-

ments si be Rademacher distributed

si =
{

1, with probability 1/2

−1, with probability 1/2.

Then the displacement, i.e., the x-coordinate of the end of the walk, is simply

x(T ) =
T∑
i=1

si.

11The case of the “true” self-avoiding random walk is more involved, and should not be mentioned
here. However, the interested reader may read Reference [85] for a derivation of ν = 2/3 in the
one-dimensional case.
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Since its mean value is zero, one usually looks at the square displacement

x2(T ) =
(

T∑
i=1

si

)2

=
T∑
i=1

T∑
j=1

sisj

=
T∑
i=1

s2
i +

T∑
i=1

T∑
j=1
j 6=i

sisj .

For the last term the following is valid:

sisj =
{

1, if si = sj ,which has probability 1/2

−1, if si 6= sj ,which has probability 1/2

such that its mean value is again zero. Considering the first term, with s2
i = 1 we get

〈
x2(T )

〉
=
〈

T∑
i=1

s2
i

〉
= T.

Therefore the end-to-end distance R for this case scales as the square root typical for
diffusive processes

R ∝ T 1/2 ⇒ ν = 1/2.

We can generalize this easily to arbitrary dimensions if we replace each of the incre-
ments si to be Cartesian unit vectors each occuring with probability 1/2d and using
their orthonormality. Therefore this scaling for the lattice random walk is valid in
every dimension.
The self-interacting types are more complicated and have generally larger values

for dimensions low enough that the interaction does play a role. To give an intuition
why this is the case, one can roughly think of the occupied sites as repelling (in an
entropic sense, since there are no forces), such that the walk is pushed away from
its past trajectory and thus from the start, resulting in longer distances covered. In
higher dimensions the space to explore becomes larger. Thinking of a growth pro-
cess, it becomes very improbable that the walk will return to an already visited site.
The dimension above which the behavior is the same as the standard random walk
(according to ν) is called critical dimension.
For two dimensions exact values are obtained by non-trivial methods, e.g., based on

conformal field theory. For d = 3 the self-avoiding random walk and loop-erased ran-
dom walk proved especially intractable and only numerical estimates exist. Table 3.1
shows known exact values of ν or the best current estimates for ν of all walk types
considered in this study.
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d = 1 d = 2 d = 3 d = 4 d ≥ 5
LRW [86] 1/2 1/2 1/2 1/2 1/2
GRW [86] 1/2 1/2 1/2 1/2 1/2
SAW [75, 87] 1 3/4 0.587597(7) ∗1/2 1/2
LERW [88] 1 4/5 0.61576(2) ∗1/2 1/2
SKSAW[80] 1 4/7 ∗1/2 1/2 1/2
TSAW [84] 2/3 ∗1/2 1/2 1/2 1/2

Table 3.1.: Expected scaling exponents ν for the scaling of the distance between start and
end point R ∝ T ν . Entries marked by an asterisk ∗ are for the upper critical dimension and
subject to possible logarithmic corrections.

3.3.2. Convex Hulls

As already stated in the introduction, the convex hull C of a set of points P in d
dimensions is the smallest convex polytope including all points of the set P. Convex
hulls find wide application in 3D computer graphics and computational geometry,
they are so fundamental that the highly cited textbook Reference [89] dedicates two
chapters to them. They are a (possible) intermediate step to efficiently calculate
Delaunay triangulations and their dual Voronoi diagrams [90] (to physicists maybe
more commonly known as Wigner-Seitz cell).

Figure 3.10.: Examples for Gaussian random walks in d = 2 and d = 3 with T = 2048 steps
each. Their convex hull is visualized in red.

Note that the number of facets of a convex hull of a random set of points grows
exponentially in the dimension. So every exact algorithm to obtain the convex hull, i.e.,
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all of its facets, has an exponential lower bound on its time- and memory complexity
Ω
(
N bd/2c

)
[91–93]. While there are approximation algorithms operating in linear time

independent of the dimension [94, 95], we use exact algorithms and are thus limited
to rather low dimensions of d ≤ 6.

There is a wide range of algorithms to determine the convex hull of a given set
of points. Since the most time-critical operation in the simulations of this study
is the calculation of the convex hull, the available methods need to be evaluated
and reviewed carefully. The following subsections will introduce all algorithms used
for this study. First some definitions are given to establish a clear language for the
geometrical concepts used in the algorithms. A reader already somewhat familiar with
computational geometry, might skip this section and use it as a glossary whenever an
unknown word in an algorithms’ description is encountered. In the following two
subsections Andrew’s algorithm for convex hulls, which we used for simulations in
d = 2, and quickhull, which we used for higher dimensions, are explained.12 We
will end this section with methods how to obtain the observables we are interested
in. Further, in Appendix B.2.1 a general preprocessing heuristic is introduced and in
Appendices B.2.2 and B.2.3 two more exact algorithms, which were considered, are
described. In Appendix B.2.4 a comparison of the run times of all implementations
considered for the studies of this thesis are given, justifying the choice of algorithms
used for the simulations.

Concepts of d-Dimensional Geometry

First, a few definitions will be given. These are mainly notation and necessary for
a clear language to describe the following algorithms. Some of the definitions are
enriched with technical details for a fast computation of the defined properties, which
is crucial for a decent implementation to be able to do extensive simulations. Note
that we identify points with the vector pointing from the coordinate origin to their
position.

The hypervolume V is the generalized volume. In the special case of d = 2 it is the
same as the area and in d = 3 as the volume.

We will call the (d− 1)-dimensional boundary of a d-dimensional object the surface
∂V . In the special case of d = 2 it is the same as the perimeter and in d = 3 as the
surface area.

Given a d-dimensional polytope (d = 2: polygon, d = 3: polyhedron) its boundary
consists of (d − 1)-dimensional hyperplanes, called facets (d = 2: edge, d = 3: face,
d = 4: cell). The (d − 2)-dimensional hyperplanes which are the borders of a facet,
are called ridges (d = 2: vertex, d = 3: edge, d = 4: face).
The normal n of a facet is a normalized vector orthogonal to all pairwise differences

of the facet’s vertices qi. For intuition in three dimensions, when shifting the normal
to the center of the facet, it stands orthogonal on the front of the facet. Which
12The implementation used to generate the images shown and animations referenced is available at

https://github.com/surt91/convex_hulls.
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side is the front, is conventionally defined by the order of the vertices qi, which are
enumerated counter-clockwise when looking on the front of the facet, i.e., the pointing
end of its normal. Its direction is straight forward to calculate using, e.g., a generalized
crossproduct defined by following determinant:

q1 × · · · × qn−1 =

∣∣∣∣∣∣∣∣∣∣
q1

1 · · · q1
n

... . . . ...
qn−1

1 · · · qn−1
n

e1 · · · en

∣∣∣∣∣∣∣∣∣∣
, (3.9)

where the superscript denotes the component of the vector and ei are the Cartesian
unit vectors. Note that since the entries in the last row are vectors, the result is a
vector and not a scalar. The special case of d = 2 can be calculated by an extension
to three dimensions with a z-component of 0 and crossproduct with ez.

The terms in front of and behind a facet (d = 2: left of and right of ) denote the
relative position of a point to a facet considering its orientation. This can be easily
calculated given the normal vector n of the facet and some point on the facet q, e.g.,
one of its vertices. Then point p is in front of the facet, if any vector pointing from
the facet to p has a parallel component with p, i.e.,

p in front of, if n · (p− q) > 0
p behind, if n · (p− q) < 0
p on the same (hyper)plane, if n · (p− q) = 0

(3.10)

The reciprocal notation: A facet is called visible from a point, if the point is in front
of the facet.
By convention all facets of a polytope are oriented such that their normal vectors

point to the outside. That means a point p is inside a convex polytope, if it is behind
all facets, i.e.,

ni · (p− q) < 0 ∀i.

Correspondingly a polytope is convex, if none of its facets are visible from any of its
vertices.
In two dimensions, we will define the orientation o of a triplet of points (a, b, c) as

follows using the z-component of the cross product, again treating two dimensional
vectors as three dimensional with a zero z-component:

o(a, b, c) =


clockwise, if [(b− a)× (c− a)]z > 0
counter-clockwise, if [(b− a)× (c− a)]z < 0
colinear, if [(b− a)× (c− a)]z = 0

(3.11)

A d-dimensional simplex (d = 2: triangle, d = 3 tetrahedron) is a polytope with
d + 1 vertices, which are linear independent, i.e., a simplex has always a non-zero
hypervolume.
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Andrew’s Monotone Chain

Andrew’s monotone chain [96] is a very simple algorithm to determine the convex hull
of planar point sets, i.e., it is only applicable in d = 2. Its running time for n points
O(n logn) is dominated by sorting the points.13

To be precise, first the input points are sorted according to their x-coordinate and
ties are decided by their y-coordinate. This sorting is also called lexicographical sorting.
In a second step one iterates over the sorted points from left to right.

Figure 3.11.: Six steps of Andrew’s monotone chain algorithm. The triplets are shown with
indicators whether they are clockwise or counter-clockwise. Discarded points are gray. Under
the pictures the sorted array of points is visualized. The complete upper hull will be the
non-discarded (not marked by crosses) points.

Starting with the three left-most points, we always look at triplets of points. We
will identify the triplet i as the point at position i according to the aforementioned sort
and the previous two non-discarded points. While the triplet i is counter-clockwise
(cf. Equation (3.11)) and there are still enough non-discarded points left, discard the
middle point. Then increase i by one. This is repeated until all points were considered,
i.e., i = n. This process is pictured in Figure 3.11. The non-discarded points form the
upper half of the convex hull. Applying the same scheme on the reverse of the sorted
points, will yield the lower hull. Since the first point of the upper hull is always the
same as the last point of the lower hull and vice versa, they can be merged at these
points to get the complete convex hull.14

Historically seen, it is an incremental improvement of the algorithms proposed by
Graham [98] and later Anderson [99]. The main advantage over the Graham scan,
which follows the same idea but sorts according to the polar coordinate instead of the
13Note that it is therefore possible to reduce the run time to O(n), if the points were suitable for

special sorting algorithms, like radixsort [82, 97] for points with integer coordinates in a fixed
range.

14An animation of this process is available at https://data.schawe.me/andrew.gif.
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x-coordinate, is the computationally cheaper comparison operation. Note however,
that to compare the polar coordinates it is not necessary to calculate trigonometric
functions, but it is sufficient to use the above mentioned “is left of” operation as the
comparison operation.

Quickhull

Quickhull [100–103] is a divide and conquer algorithm to determine the convex hull.
It has an average time complexity of O(n logn) in d = 2 and d = 3 and O(nbd/2c) in
all higher dimensions.
The fundamental idea will be first explained in d = 2, since it is easy to visualize

and understand. Then, the modifications needed for d = 3 (and all higher dimensions)
are explained.

a

b

a

b

c

a

b

cd

Figure 3.12.: Visualization of the quickhull algorithm with three steps into the recursion.
Green points are candidates for members of the convex hull and grey points are discarded.

Start with two points a, b on the convex hull, e.g., the points with minimum and
maximum x-coordinate. Determine the point c left of and farthest away from the edge
(a, b), i.e.,

c = arg max
c′

{[(
c′ − a

)
× (b− a)

]
z

}
.

All points inside the triangle (a, b, c) can be discarded as they can not be part of
the hull. Repeat this step recursively with the edges (a, c) and (c, b) until there are
no points on the left side of the current edge. All edges created in this way on the
bottom level of the recursion are part of the convex hull. Two steps of this recursion
are pictured in Figure 3.12. The same process is repeated recursively with the point
c′ left of and farthest away from the inverse edge (b,a).15

In d = 3 we start with a tetrahedron of non-degenerate faces, i.e., faces whose
vertices are not colinear. Also its vertices should be extrema in the coordinates such
that they surely are part of the convex hull. First, we start with an arbitrary facet f
of the initial tetrahedron. Same as in the d = 2 case, we need to find the point in front
15An animation of this process is available at https://data.schawe.me/quickhull.gif.
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Figure 3.13.: Visualization of the quickhull algorithm in three dimensions with four steps into
the recursion. Green points are candidates for members of the convex hull, red is the eye
point, the horizon is marked by black lines, blue facets are the intermediate representation of
the hull and red facets are visible from the eye point and will be discarded. Shading is just a
guide to the eye.

of and farthest away from the facet f . This point is called eye point p. In contrast
to the d = 2 case, we now update an intermediate representation of the hull, which
is initially the tetrahedron we chose. Next we need to find the horizon. It consists of
the edges separating visible faces from invisible faces when looking from the point of
view of the eye point.16 Every facet that is visible from the eye point is removed from
the intermediate representation and for every edge (u,v) of the horizon, the new face
(u,v,p) is added to the intermediate hull. For each of the added facets and the other
d facets of the initial tetrahedron, this procedure is repeated recursively until there
are no more points in front of any facets. At this time the intermediate representation
is the wanted convex hull. A few steps of this recursion are shown in Figure 3.13.17

For d > 3 there are no more fundamental differences and the above method can be
generalized straight forwardly. Nevertheless, the run time increases as O(nbd/2c), since
this is the number of facets a convex hull typically contains [91–93], i.e., any algorithm
needs at least this time to output every facet defining the hull.

The Volume and Surface of a Convex Polytope

After the construction of the convex hull, we can determine its hypervolume. This is
straight forward in d = 2 with

A = 1
2

|C|−1∑
i=1

(yi + yi+1) (xi − xi+1) (3.12)

L =
|C|−1∑
i=1

√
(xi − xi+1)2 + (yi − yi+1)2, (3.13)

16While it would be possible to test every facet, more efficient methods exists. One possibility is to
maintain a graph of neighboring facets and doing a depth-first search starting at f to find the
edges separating visible from invisible faces

17An animation of this process is available at https://data.schawe.me/qh3d.mp4.
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with cyclic indices. The sum in Equation (3.12), also known as a variation of the
shoelace formula, sums the areas of the trapezoids, with parallel edges starting per-
pendicular on the x-axis and ending in the points yi and yi+1. This results clearly in
the area of the whole convex hull. Even more trivial, the sum Equation (3.13) adds
the distances of every consecutive pair of points on the hull.

But in higher dimensions the determination of the volume and surface is a non-
trivial problem [104, 105]. While Monte Carlo integration is the only feasible method
for general polytopes in high dimensions, in this study we can exploit the convexity of
our polytope, since for convex polytopes the hypervolume and surface can be obtained
with a recursive scheme.18 Given the facets fi, which are (d−1)-dimensional simplexes,
one can choose an arbitrary fixed point p inside the convex polytope and can create a
d-dimensional simplex from each facet fi, such that their union fills the entire convex
hull (cf. Fig. 3.14 for a d = 2 example). Therefore the volume can be obtained by
summing the volume of all d-dimensional simplexes:

V =
∑
i

dist(fi,p)ai/d,

where dist(f,p) is the perpendicular distance from the facet fi to the point p and ai
is the surface of the facet. The surface of a (d − 1)-dimensional facet is its (d − 2)-
dimensional volume, which can be calculated with the same method recursively, until
the trivial case of one dimensional facets, i.e., lines. Determining the surface uses the
same recursion, by calculating ∂V = ∑

i ai.

·

·

·

·

·

Figure 3.14.: Visualization of the idea to calculate the volume of a convex polygon given its
facets and an interior point, perpendicular distances are shown with dashed lines.

To foster intuition, this method is pictured for d = 2 in Fig. 3.14. Here, the facets
are lines and the volume of the simplex is the area of the triangle. The perpendicular
distances are visualized as dashed lines.

3.4. Results

Article A.1 obtains large parts of the distribution of both the (hyper-)volume and sur-
face for Gaussian random walks in dimensions 3 and 4, as well as precise estimates for
its variance for long single and multiple walks in up to 6 dimensions. It shows that the
same scaling as for the two dimensional case is easily extended to higher dimensions
18Alternatively Stein’s formula [106] can be used V = 1

d! det (v1 − v0, ..., vd − v0).
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and that the numerical data is compatible with this scaling. Further it generalizes a
heuristic argument for the limiting form of the rate function (cf. Section 2.1) charac-
terizing the right tail to higher dimensions

Φ(S) ∝ S2/de ,

where de is the effective dimension of the observable, e.g., de = 2 for the surface
area of a d = 3 dimensional hull. Also for the left tail behavior we could observe
behavior which we expected, due to the close relation to the support function M
(cf. Section 3.1.1).
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Figure 3.15.: Demonstration of the scaling of the distribution of the perimeter L of the self-
avoiding random walk as derived in Article A.2 for different sizes T .

Article A.2 approaches the lack of results for non-Markovian random walks, i.e.,
random walks which have a memory. It studies a selection of three models for self-
avoiding walks, namely the self-avoiding random walk, the loop-erased random walk
and the smart-kinetic self-avoiding random walk. For all three the same generalized
scaling of the whole distribution parametrized by the growth exponent ν of the walk
type and the dimension was proposed and supported by numerical data down into the
deep tails of very low probabilities. An example of such a scaling, which was evaluated
for the publication Article A.2 but not shown therein, is shown in Figure 3.15. Here
a collapse, i.e., the independence of the system size after the scaling except for finite-
size effects, is well visible. This is especially interesting since the behavior of the
distribution’s tails is therefore only dependent on observables which can be obtained
from a study of the high-probability region. The numerical large deviation data was
used to underpin an asymptotic functional form derived by an heuristic argument for
the right-tail of the rate function. This is a generalization of the relation observed in
previous studies (cf. Section 2.1 and Article A.1) dependent on ν

Φ(S) ∝ S1/de(1−ν), (3.14)

where de is the effective dimension of the observable.
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3. Convex Hulls of Random Walks

Article A.3 handles the “true” self-avoiding random walk, an ensemble of self-
avoiding walks, whose self-avoidance can be tuned with a parameter β. In particular
at the extreme β = 0 it reduces to a standard random walk. The first surprising result
of this study was that at the β → ∞ extreme the “true” self-avoiding random walk
behaves the same as the smart-kinetic self-avoiding random walk in the far right tail,
but differently, especially with a different growth exponent ν, in the main, i.e., high
probability, region. This was the first example where a collapse using the observables
obtained from the main region does not reflect the behavior of the large deviation tails.
Correspondingly the estimate for the rate function Equation (3.14) does not work, but
the same form with the growth exponent ν of the smart-kinetic self-avoiding random
walk was observed.
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4. Groundstate Energy of a Generalized
Random Energy Model

In this chapter we will look at a problem which is of fundamental interest for pure
mathematics and additionally has a physical application as a simple toy model for
non-interacting fermions. We will first motivate it from both the mathematical and
physical side and shed a bit of light on the background of a very similar and famous
physical toy model in Section 4.1. Afterwards we formulate our research question in
Section 4.2. In Section 4.3 the technical details for an efficient implementation of the
model in the context of our large deviation sampling approach is explained in minute
detail. Consecutively Section 4.4 gives an overview over the results we obtained in
Article A.4.

4.1. Current State of Research
The background of our research problem can be motivated from a purely mathemat-
ical point of view as well as from a physical point of view. We will start with the
mathematical viewpoint, as it nicely connects two quite fundamental concepts.

The first is the central limit theorem, which was already shortly mentioned in Sec-
tion 2.1. It says that the sum of N identically, independently distributed (i.i.d.) ran-
dom numbers with finite mean and variance will converge to a Gaussian distribution
in with increasing N . This is one of the most fundamental and well known theorems
of stochastics. It is the fundament of error analyses in many experimental disciplines,
as the most basic error estimates assume Gaussian errors, which is a sensible guess
because of the central limit theorem.

Similarly, there are theorems about the distribution of the maxima ofN i.i.d. random
numbers which are collected under the term extreme-value theory. If the N random
variables Qi are i.i.d. according to the distribution p and if p decays exponentially, the
distribution of the maxima will converge to a Gumbel distribution P (x ≤ maxi{Qi}) =
e−e−(x−µ)/β with parameters µ and β dependent on the details of p. Also for the
case of slow decaying distributions, the distribution of the maxima will, under mild
assumptions, converge to a Fréchet distribution and for the case of a support with an
upper bound to a Weibull distribution.

Now we ask a generalized question, which includes these two theorems as limiting
cases.

What is the distribution of the sum S of the K largest values of N i.i.d.
from p drawn random numbers in the limit of N →∞?
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Figure 4.1.: N = 1000 random numbers xi distributed according to the Erlang distribution
p(x) = xe−x, x ≥ 0. (a) Estimate for the distribution of their sum (K = N). (b) Estimate for
the distribution of their maximum (K = 1). Apparently (a) behaves like a Gaussian in the
main region and (b) like a Gumbel distribution. The data were obtained by simple sampling
over 106 realizations.

For the case K = 1 the answer is one of the extreme value distributions dependent
on the type of the distribution p, for the case K = N it is the Gaussian distribution.
Both extreme cases are visualized in Figure 4.1. For K in between these two extrema
the distribution is exactly known if p is an exponential distribution [107]. For this
case a comparison to our large deviation simulations shows a good agreement with
the exact result over a very wide range, which is visualized in Figure 4.2. For general
distributions p this is still an open question.
The direct connection of this mathematical problem to a physical problem is a

“toy” quantum system with N energy levels and K non-interacting fermions. In the
ground state the K particles will occupy the K lowest energy levels and the system
will therefore have a total energy E0 equal to the sum of the K smallest values. The
energy distribution is therefore exactly the above introduced problem if we look at the
minima instead of the maxima. The extreme value distributions are still applicable
for minima after a trivial change of variables x→ −x.

Interestingly, this model is in structure very similar to the random-energy model in-
troduced in Derrida’s highly cited work [108, 109]. The random-energy model consists
of independent random energy levels, much like the above introduced model. The main
distinctions are that energy levels of the random-energy model are typically Gaussian,
while in our model we look at arbitrary distributions with positive support. Anyway,
it is instructive to look into the background of the random-energy model.
One of the most interesting properties of the random-energy model is that one can

construct a Hamiltonian, which connects it to the iconic Sherrington-Kirkpatrick (SK )
mean field model [110] for spin glasses [111, 112]. Therefore consider a system of N
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Figure 4.2.: Distribution of the sum of the largest K values of N exponentially distributed
random numbers. This data were preliminary tests and are not published in Article A.4. The
inset shows the same data in linear scale. (For clarity not every data point is visualized.)

interacting Ising spins1 σi. Let

HP({σP}) = −
∑

{i1,...,iP}
Aiii2...iPσi1 . . . σiP (4.1)

be the Hamiltonian, where the sum goes over all groups of P spins {i1, . . . , iP} and
each group has an individual interaction term Aiii2···iP . The interactions are chosen
as suitably normalized Gaussians. Obviously, for P = 1 we have a system of N free
spins without interaction. For P = 2 we have interaction of all pairs of spins, which is
the Hamiltonian of the SK spin glass model. For the limit of large P Reference [108]
shows that the 2N energy levels εi become independent Gaussian distributed. This
enables the analytical study of this model in contrast to spin glasses, where correlations
complicate the calculations.

Derrida derives the most interesting thermodynamic properties, like the partition
function and the free energy, of the random energy model in his seminal papers [108,
109] and shows rich critical behavior. There is a phase transition below a finite critical
temperature from an unordered state to a frozen state, where the system is always in
its ground state. Further, adding an additional pairwise interaction to this model

HP′({σP}) = HP −
J0
N

∑
〈ij〉

σiσj (4.2)

leads to the classical para- and ferromagnetic phases. Additionally, there are two
frozen states, one without magnetization at low pairwise coupling J0 and the other
with finite magnetization at larger pairwise coupling.

1Since it would take too much space to introduce the Ising model properly and most readers will
already be familiar with the so called “Drosophila of statistical mechanics,” I will not go into
detail here. However, a reader who would like to read my words explaining it, can either read my
bachelor’s thesis [22] or Reference [20].
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4. Groundstate Energy of a Generalized Random Energy Model

This model was never intended to describe a real physical system, but rather to
pose a toy model simple enough to teach, understand and deploy new methods. In
this regard, it has to be considered a success. In the history of spin glasses, it was
used, e.g., to test the plausibility of Parisi’s replica symmetry breaking [113, 114]
ansatz, where in Reference [115] a solution obtained using the replica approach for the
general P case could be shown to coincide in the limit P → ∞ with the exactly known
properties of the random energy model. Also, Talagrand’s rigorous treatment of spin
glasses in Reference [116] starts with a chapter about the random energy model.

4.2. Research Question
As mentioned above, our model is very similar to Derrida’s random energy model,
though we are free to choose any distribution p for the energy levels εi. We do not
want to study the finite temperature behavior like Derrida has, but are only interested
in the ground state, corresponding to the frozen phase of Derrida’s original model.
Correspondingly, the question we want to answer is

What is the distribution PK(E0) of the groundstate energy E0 of the K
smallest energy levels εi of N random energy levels i.i.d. according to an
arbitrary distribution p?

Or in the mathematical framework introduced in the beginning:

What is the distribution PK(S) of the sum S of the K smallest values
of N i.i.d. from p drawn random numbers?

We tackled this question in Article A.4. From both an analytical point of view in the
limit of N →∞ and with numerical simulations for finite N , which show a convergence
to the analytically obtained asymptotic form.

4.3. Models and Methods
While the model is quite simple and can be stated in only a few lines, we will spend a
bit more time with the numerical methods used to examine it in the paragraphs that
follow. For the details of generating random numbers for the different distributions
studied in Article A.4, the reader is referred to Appendix B.3.

The model we are scrutinizing is defined by a distribution of the energy levels p(ε),
the number of energy levels N and the number of fermions K. We name the energy
levels by ascending energy, i.e., ε1 ≤ . . . ≤ εN . Naturally, each energy level can only
be occupied by one fermion, such that the ground state energy of the system is

E0 =
K∑
i=0

εi. (4.3)

A visualization of an example realization is shown in Figure 4.3.
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Figure 4.3.: Visualization of a groundstate of our random energy model. There are N = 10
energy levels εi of which the K = 3 lowest are occupied. Here, the energy levels are distributed
according to the distribution p(ε) = εe−ε, ε ≥ 0.

Efficient Implementation Since extensive numerical simulations profit from an effi-
cient implementation, we will dedicate here more space for the implementation details
than would be appropriate in an article. The naive implementation of an MCMC
change move for this model would change a random energy level εi to ε′, sort the
sequence in time O(N logN) anew and sum the the first K values of the newly sorted
sequence in O(K) = O(1) (because K is fixed). Obviously we do not have to sort the
whole sequence from scratch if only one energy level is changed. In fact, we can first
remove the εi to be changed from the sequence and exploit the order of the remaining
sequence to insert the new energy level ε′ at the correct place. Here, we have to go a
bit into technical details of the implementation for an optimal strategy.
One option would be storing the sequence in an array. The advantage is that

selecting the element εi to be changed is possible in O(1) using an index. Finding the
correct position of the new value ε′ can be done in O(logN) using binary search. The
disadvantage is that the removal and insertion operation both take time O(N), since
on average half of the entries need to be copied to new positions in the memory.
The next option would be using a binary tree for the sequence. This way the order is

automatically maintained during insertions and removals. Also both operations only
take time O(logN) in the worst case, when we use a self-balancing version of a binary
tree, like a red-black tree [82] or an AVL tree [82]. But there is no easy way to select
a random element from a tree. One would have to read O(N) elements to be able to
uniformly draw one random element.
So we have two approaches both resulting in O(N) time complexity for one eval-

uation of the energy. Fortunately, we can combine both data structures to achieve
a time complexity of O(logN) per iteration. We maintain an unsorted array of the
energy levels εi to draw random entries in constant time. Therefore we draw an index
i of the unsorted array uniformly. The candidate for the change move ε(i) at position
i can then be found in, erased from and its replacement ε′ inserted into the binary
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Figure 4.4.: Visualization of the data structure used for the simulation of our random-energy
model. (a) before the change, (b) after the change. The entry at position 4 in the unsorted
array is selected by chance and its value determined via the array as ε(4) = 6. Consequently
6 is removed from the tree. A new random energy level ε′ = 3 is proposed and written to the
position 4 in the array. Also, ε′ = 3 is inserted into the tree. The new energy E0 can now be
obtained by traversing and summing the first K elements εi of the tree.

tree in O(logN).2 Also we have to overwrite the entry at position i in the array with
the replacement value ε′. The new energy can be calculated in O(logN) in the worst
case by traversing and summing the first K elements in the tree. If this change move
is rejected, the operation to undo it is in the same complexity class. A small example
is shown in Figure 4.4.

Markov Chain Change Move With the above techniques it is trivial to generate
a typical realization of the ensemble. Just drawing N random numbers as energy
levels εi, sorting them and summing the smallest K of the random numbers results
in a uniform sample for E0. But constructing a Markov chain to perform importance
sampling using the black box approach (cf. Section 2.2.3) uncovers some difficulties.
Especially for the extreme case of large E0, it is clear that every single energy level εi
needs to be large. If we just replace a random entry of the underlying vector ξ with a
new uniform random number, the new entry will be smaller than the one it replaces in
most cases. This change will lead to a smaller E0 than before and will therefore most
likely be rejected, if we are aiming for the large E0 region. To mitigate this problem,
we refined the black box approach by not replacing a chosen ξi but changing it slightly.
We still have to ensure that we sample the correct statistics, i.e., when always accepting
the change moves, the entries ξi need to maintain a uniform distribution. Therefore
we change a chosen entry ξi to ξ′ = ξi + δη, where η ∈ [−1, 1] is uniformly distributed
and δ ∈ {10−i|i ∈ {0, 1, 2, 3, 4, 5}} also uniform determines the scale of the change.
In the case ξ′ /∈ [0, 1), the proposal is automatically rejected. Note that this protocol
only works if the ξi are uniform random numbers, thus we generate the energy levels

2Mind that we could also store pointers to the nodes of the tree in the array, which would give us
constant time find and removal. But since insertion still takes O(logN) time, we will stay here at
this easier formulation where every value exists twice.
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εi following the distribution p(ε) of interest in every iteration from the underlying
uniform random numbers ξi (or in the case of Gaussian from two uniform random
numbers ξ2i and ξ2i+1). The exact methods for this are shown in Appendix B.3.

For our extreme example this means that at large values of E0, where every value of
εi is large, due to the construction of these εi from the underlying ξi, every ξi is either
very close to 0 or very close to 1. Now there is a high probability to change them only
very slightly on the scale of, e.g., 10−5, such that the corresponding εi stays large and
may be accepted.

This refined method enables us to sample deeper into the right tail than possible be-
fore. Also this protocol is still generally applicable to any problem, if similar problems
should be encountered.

4.4. Results
In Article A.4 we find a large N asymptotic form F

(α)
K (z) for the distribution PK(E0)

with fixed K. This asymptotic form is universal for distributions whose underlying
p(ε), decays fast enough, has positive support and behaves as p(ε) ≈ Bεα for small ε.
The rescaled argument is z = bE0N

1/(1+α) with b = (B/(α+ 1))1/(α+1).
The following paragraphs will be a “tourists guide” through the paper. The analyt-

ical part of the paper is the contribution of my coauthors, Grégory Schehr3 and Satya
Majumdar. Without going into too much detail, the basic approach of the analytical
derivation should be sketched.
First, an explicit joint probability distribution for the K smallest random numbers

P (ε1, · · · , εK) = Γ(N + 1)
Γ(N −K + 1)

K∏
i=1

p(εi)
K∏
i=2

Θ(εi − εi−1)
[∫ ∞
εK

p(u) du
]N−K

(4.4)

is derived using combinatorial arguments. Basically, the combinatorial factor in front
is the number of ways we can draw K numbers from a pool of N numbers, the first
product calculates the probability to draw the values of the energy levels εi and the sec-
ond product calculates the probability that the first K entries of the random selection
are ordered using the Heaviside function Θ. The integral calculates the probability for
the remaining N−K numbers to be larger than εK . Starting from this the probability
for a certain energy E0 of the system to occur is a simple K-dimensional integral over
the product of a Dirac δ function and P (ε1, · · · , εK). This way the probabilities of
every configuration resulting in the system energy E0 are summed leading to a compli-
cated expression for P (E0). The structure of P (E0) lends itself to perform a Laplace
transform on it for simplification, such that from there on the calculation operates
on the distribution’s Laplace transform

〈
e−sE0

〉
, a concept we already encountered in

Section 2.1 and Equation (2.7). The Laplace transform can be simplified using approx-
imations for large N . At this step the influence of the distribution p(ε) from which the

3In September 2016 I spent a month at the same institute as Grégory, the LPTMS in Orsay and in
the summer 2017 I attended the FPSP XIV summer school where Grégory was a lecturer.
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random numbers are drawn is reduced to one parameter α, which is determined by the
behavior of p(ε) ∼ εα for small ε. The result will therefore not only be applicable to
special distributions p(ε), but is universal for whole classes of distributions p(ε). This
results in an expression for the Laplace transform of the asymptotic distribution F (α)

K :∫ ∞
0

F
(α)
K (z)e−λ z dz = (α+ 1)K

Γ(K)λ(α+1)(K−1)

∫ ∞
0

xαe−λx−xα+1 [γ(α+ 1, λ x)]K−1 dx ,

(4.5)

with the incomplete gamma function γ(a, x) =
∫ x

0 duua−1e−u. For the special case
of α = 0 the transform can be inverted yielding an elementary expression for the
asymptotical distribution of interest

F
(0)
K (z) =

K∑
n=1

(−1)K−n nK−1

(K − n)!n! e−z/n . (4.6)

This special case includes exponential, half-Gaussian and Pareto distributed ε. In-
deed we show for these three distributions numerically the convergence to the same
universal limiting form F

(0)
K (z). Interestingly, the convergence happens from different

directions. The exponential case shows very little to no deviations from the limiting
form at finite sizes N . The Pareto case is always larger than the limiting form for finite
N and the Gaussian case is always lower than the limiting form. All those results are
pictured in Figure 1 of Article A.4.

Values extrapolated point-wise with the ansatz for finite-size corrections of

PK,N (E0) ≈ bN1/(1+α)
[
F

(α)
K (z) +N−βG

(α)
K (z) +N−2βH

(α)
K (z)

]
, (4.7)

with the correction terms G(α)
K (z) and H(α)

K (z) assumed as constants and obtained by
a least squares fit nicely match the asymptotic form F

(0)
K (z).

For the general case α 6= 0 the expression for the Laplace transform of F (α)
K (z) in

Equation (4.5) is simple enough for numerical inversion and is used to compare to
numerical results. However, we need to employ a multiprecision library because of
the precision requirements to numerically inverse Laplace transforms, especially since
the precision of the result needs to be exceptionally good as our obtained distribu-
tions are precise down to 10−160. We therefore use the implementation of de Hoog’s
algorithm [117] provided by the multiprecision library mpmath [118].4
Using the same procedure, we also show a convincing convergence to the analytical

result for p(ε) = εe−ε, ε ≥ 0 corresponding to α = 1. This can be seen in Figure 4.5.

4mpmath implements advanced algorithms on the primitives provided by GMP, the GNU multiprecision
library.
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Figure 4.5.: Distribution of the sum E0 of the K smallest values of N random numbers
distributed according to p(ε) = εe−ε, ε ≥ 0 rescaled and extrapolated to match the asymptotic
expectation. This figure is taken from Article A.4.
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5. The Longest Increasing Subsequence

The longest increasing subsequence (LIS) seems to find its first mention as an example
to demonstrate Monte Carlo sampling in the text book Reference [119]. The corre-
sponding chapter was written by Stanisław Ulam, who we remember as one of the
founding fathers of the Monte Carlo method from Section 2.2, and therefore this prob-
lem is also sometimes called Ulam’s problem. Given a sequence S with N entries s is a
subsequence of S if all entries of s also occur in S in the same order, but not necessar-
ily without gaps. As a visual clarification, one can obtain a subsequence by removing
arbitrary elements from a sequence, e.g., s = (�3, 9, �4, �1, 2, 7, �6, �8, �0, 5) = (9, 2, 7, 5). If
the elements of s are strictly increasing, it is called increasing subsequence. The LIS
is now an optimization problem to find the longest of all subsequences, such that the
entries are strictly increasing. Note that the LIS is not necessarily unique, e.g., in the
following sequence one LIS is marked with underlines and one marked with overlines:
S = (3, 9, 4, 1, 2, 7, 6, 8, 0, 5). The length L of the LIS, in this example L = 4, is our
observable of interest. In his chapter of Reference [119] Ulam uses simple sampling
to estimate the expected length 〈L〉 of the LIS of random permutations. He suggests
a linear relation of 〈L〉 ≈ 1.7

√
N , which is today known exactly in the limit of long

sequences to be 〈L〉 = 2
√
N [120].
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Figure 5.1.: (a) Random permutation Si of all integers 0 ≤ j < 1000 plotted at their cor-
responding position i in the sequence. The L = 53 entries constituting one of the LISs are
marked with circles. (b) Random walk Si with steps from a uniform distribution U(−1, 1).
The L = 66 entries constituting one of the LISs are marked with circles.
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In the context of this thesis, we are interested in more than just mean values and
indeed explicit expressions for limiting forms of the rate function, each valid in one
of the tails, are already known [121–123]. Also the asymptotic limit of the whole
distribution after suitable rescaling is known [124] to converge to a Tracy-Widom
distribution [125].

To appreciate this result, we have to take a look at the Tracy-Widom distribution.1
While there is no closed form representation for its probability density function, it is
a universal distribution appearing in seemingly unrelated problems. The first problem
in which the Tracy-Widom distribution was spotted originates from random matrix
theory: For specific ensembles of random matrices the largest eigenvalue is distributed
according to the Tracy-Widom distribution, in the limit of large matrices. More pre-
cisely, there are mainly three Tracy-Widom distributions of interest, which are labeled
by a parameter β ∈ {1, 2, 4}. While technically, there are Tracy-Widom distributions
for other values of β, only these three values have a nice interpretation from random
matrix theory. Since random matrix theory is far beyond the scope of this thesis, we
shall only look shallowly at the ensemble corresponding to β = 2, the Gaussian unitary
ensemble.2 This ensemble of random matrices consists of Hermitian matrices M of
size N × N , i.e., the entries are complex numbers Mij , such that they are equal to
their complex conjugate after transposition, i.e., Mij = Mji. Since the matrix is Her-
mitian, the diagonal elements Mii = aii are real i.i.d. Gaussians with zero mean and a
variance of 1/2. The nondiagonal elements are defined asMij = Mji = aij +ibij , where
aij and bij are i.i.d. Gaussians with zero mean and variance of 1/4. The probability
density function of this ensemble is given as P (M) dM = 1

Z e−β/2 TrM2 dM , where Z
is a normalization constant, β = 2 and dM = ∏N

i=1 daii
∏
i<j daij dbij .

Finding the Tracy-Widom distribution known from random matrix theory in the
statistics of the seemingly unrelated LIS hints at a kind of universality of this distri-
bution. This universality was confirmed when it was found in growth processes. At
this time the Tracy-Widom distribution became very interesting for physicists. There
are for example mappings of very simple growth models to the LIS [127–130] showing
the connection clearly. Apparently the universality of the Tracy-Widom distribu-
tion is connected to the KPZ universality class originating from the Kardar-Parisi-
Zhang (KPZ) equation describing the fluctuations of the height in growth processes.
This growth can also be observed in experiments, like those conducted by Kazumasa
Takeuchi [131, 132]. In these experiments, a liquid crystal is grown and the growth
is captured by a camera. From the images the height h of the growth at time t is
captured and suitably rescaled χ = (h − v∞) + (Γt)1/3, with two constants v∞ and
Γ. This setup enabled Takeuchi to gather enough data to observe directly that the

1I had the opportunity to listen to a lecture of Kazumasa Takeuchi [126] at the summer school
FPSP XIV about the KPZ equation, Tracy-Widom distribution and a primer of random matrix
theory. This section therefore borrows the notation and examples from my handwritten notes of
this lecture [7].

2The name stems from the single entries being Gaussian distributed and the eigenvalues being in-
variant under unitary transforms due to their Hermitian structure. The other two ensembles are
the Gaussian orthogonal ensemble (β = 1) and Gaussian symplectic ensemble (β = 4).
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distribution of the measured values χ follows the Tracy-Widom distribution for prob-
abilities as small as 10−4. Indeed, when starting from a line, this results in the β = 1
Tracy-Widom distribution (corresponding to the Gaussian orthogonal ensemble) and
when starting from a point and observing circular growth it results in the β = 2
Tracy-Widom distribution (corresponding to the Gaussian unitary ensemble).
Now that we understand that the relevance of the LIS is not only in this combina-

torial problem itself, but rather in the connection of this very simple model to a whole
class of problems – from random matrix theory to the growth of surfaces described by
the KPZ equation – we will review the research literature about the LIS in more detail
in Section 5.1. In Section 5.2 we will formulate our research question. In Section 5.3
we will introduce the ensembles whose LIS we scrutinized and the methods, which are
needed to examine our research question. Finally in Section 5.4 the results obtained
during our study are shortly summarized.

5.1. Current State of Research
The first study, we will look at in more detail, is about the mapping of a surface
growth model, for which it is sensible to assume that it falls in the KPZ universality,
to the LIS. In Reference [129] an easy anisotropic ballistic deposition growth model is
introduced. Note that this is not the first growth model for which a mapping to LIS
was found. The first one was a time-continuous polynuclear growth model introduced
in Reference [127]. The advantage of the ballistic deposition model is that it is discrete
in time and space and therefore easier to visualize and in turn easier to understand,
thus we will look at this later model.
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Figure 5.2.: Anisotropic ballistic deposition on a lattice of size l = 7 with ten timesteps. Ten
blocks are falling sequentially on the positions 6, 3, 5, 2, 3, 6, 4, 3, 5, 2. The numbers indicate
the timestep in which this block was dropped. Gray sites are blocked either by a block
or because they are right of a block. This process can be mapped to the sequence S =
(3, 9, 4, 1, 2, 7, 6, 8, 0, 5) using the formalism from Reference [129]. One LIS is in this example
LIS(S) = (1, 2, 6, 8), with length L = 4, which is also the height at the highest point.

The growth model is an anisotropic ballistic deposition model in 1 + 1 dimensions.
Ballistic deposition generally means that entities with some size are moving on straight,
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5. The Longest Increasing Subsequence

i.e., ballistic, lines and stick to other entities on contact after which their position is
fixed for the remainder of the process. In the model of interest here, in each time step
a block is dropped on a random site drawn uniformly from all sites of a one dimensional
lattice with l sites. On contact, it extends all the way to the right, but not to the left.
In following timesteps new blocks may fall on the blocked sites and thus increase the
height. A few snapshots of this process are pictured in Figure 5.2. Using an ingenious
mapping [129] the height of the pile of blocks at site k and at time t can then directly
be mapped to the length of the LIS of a random permutation of N numbers, where N
is a random variable with the distribution

Pk,t(N) =
(
t

N

)(
k

l

)N (
1− k

l

)t−N
. (5.1)

Especially, the height at the highest point, i.e., at k = l, is equal to the length of a
LIS of a random permutation of N = t distinct numbers. Since the mapping itself is
not trivial and is very well explained in Reference [129], we will not look further into
the mapping.

So if we want to study the height of of this growth process, we can instead study the
length L of LISs of random permutations, for which fortunately the whole asymptotic
distribution is known already to be a Tracy-Widom distribution [124]. This can be
used with suitable rescaling to predict the height hk of the k-th column on a lattice
with l sites at time t of the ballistic deposition process for the limit of large values of
l and t and a fixed ratio tk/l

hk(t)→ 2
√
tk

l
+
(
tk

l

)1/6
χ, (5.2)

where the random variable χ is distributed according to the Tracy-Widom distribution.
This allows the authors to arrive at the asymptotic average height 〈hk(t)〉 = 2

√
tk/l−

〈χ〉 (tk/l)1/6 and asymptotic variance σ2
k(t)→

〈
[χ− 〈χ〉]2

〉
(tk/l)1/3.

There are also numerical studies concerning the LIS. Quite recently Ricardo Men-
donça3 published an article about what happens to the distribution if the sequences are
not random permutations, but random walks [133]. The fact that something changes
is easy to see in Figure 5.1. Since the entries of the sequence generated by a random
walk are strongly correlated, we can observe long runs with an upward or downward
trend. Naturally, the LIS is then confined to one of the upward trends and consists
typically of more elements. Previous mathematical work suggested that the mean
value of the length 〈L〉 should scale like 〈L〉 ≈ cN θ with a positive constant c. Espe-
cially, for random walks with steps drawn from a distribution with finite variance the
exponent is expected to be θ = 0.5 with possible logarithmic corrections [134]. For
steps drawn from distributions with diverging variance, there are rigorous bounds for a
limiting case of extremely heavy tailed distributions [135], which limit the exponent to

3During my time at the LPTMS, I listened to a talk of Ricardo Mendonça and talked to Satya
Majumdar about this topic, which inspired this study.
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a value inside the bounds 0.690.. ≤ θ ≤ 0.815... To be more precise this result applies
to α-stable distributions with α “sufficiently small” [135]. A distribution is said to
be α-stable if, loosely speaking, the distribution of the sum of n i.i.d. samples from
this distribution behaves as cn1/α times the distribution itself [136] with α > 0 and
some constant c > 0. For example the standard normal distribution is α-stable with
α = 2 and for α < 2 the variance diverges. The lower the value of α, the more heavy
the tail of the distribution. If α is not small enough, the corresponding exponent θ
characterizing the length of the LIS is conjectured to interpolate between this case and
the θ = 0.5 exponent known for the LIS of random walks with steps of finite variance.
In Reference [133] this expected scaling behavior of the mean and the high proba-

bility part of the distribution is studied on a wide range of one dimensional random
walk models using simple sampling. This way evidence is gathered that for step-
length distributions with diverging variance, for which α-stable distributions with
α ∈ {1/2, 1, 3/2, 7/4} were used, the lower bound 0.690.. ≤ θ is approached from below
when approaching the limiting case α→ 0 for which the bound was derived, support-
ing the above stated conjecture. For each of the different types of random walks the
distribution of the length p(L) is rescaled according to the scaling assumption

p(L) = N−θg
(
N−θL

)
(5.3)

yielding convincing collapses on the not explicitly known scaling function g, which
indicates that this scaling is not only valid for the mean values but also for the high
probability regions of the distribution. Indeed their data for random walks with step
length of finite variance is good enough that they give a conjecture for the constants
and the logarithmic correction of the scaling for walks with increments of finite variance
as

〈L〉 ≈ 1
e

√
N lnN + 1

2
√
N. (5.4)

5.2. Research Question
Since the testing of known results is a fundamental ingredient for any science, we
would like to first reproduce the Tracy-Widom distribution for the LIS of random
permutations, though we want to determine it far more precisely than before, i.e., we
want to study also the large deviation regime at probabilities smaller than, say, 10−100.
While the asymptotic form is known to be a Tracy-Widom distribution, it is not known
how fast the convergence is and if we can observe this shape for finite system sizes.
At the same time, we want to gather data to test the conjectures of Reference [133],
which showed a convincing scaling form of the distribution of the length L in the high
probability region. We want to test whether the same scaling is applicable also in the
tails of the distribution. Our research question will be formulated as follows.

Is a convergence to the asymptotically known form of the distribution
of the lengths L of LISs of random permutations visible for finite system

71



5. The Longest Increasing Subsequence

sizes also in the far tails? And do the conjectures tested on the main region
of the distribution of L of LISs of random walks also hold in the far tail?
What do the far tails look like?

These questions motivated a research project, whose results are shown in Article A.5.

5.3. Models and Methods
Since the LIS is already well defined in the first paragraph of this chapter, we will in
this section only introduce the ensembles of sequences for which we studied the length
of the LIS and in more detail than necessary for this study the algorithm we used to
determine this length.

We studied two ensembles of sequences. First random permutations of integers,
which is the best studied ensemble. A random permutation of N distinct integers
is a configuration drawn uniformly from the set of all N ! possible orderings of those
integers. The generation of a random permutation is possible in timeO(N) by shuffling
an arbitrary sequence of the elements with (a variation) of the Fisher-Yates algorithm
[137]. As a change move to construct a Markov chain of permutations, we simply
exchange two random entries. Note that this ensemble has the same properties as an
often studied two dimensional LIS variant as shown in, e.g., Reference [123].
The second ensemble consists of one dimensional random walks with step lengths

from a uniform distribution U(−1, 1). They are already defined in great detail in Sec-
tion 3.3.1, such that we will just rename the entities of Equation (3.8): The sequences
of this ensemble Si ≡ x(i).

5.3.1. Patience Sort

Since we are not interested in the LIS itself but only its length, we can use a peculiar
property of the patience sort algorithm. While it was originally designed as a sorting
algorithm, its connection to LISs was also found early [138]. Interestingly, it was
recently rediscovered as a sorting algorithm especially suited for partially sorted data
[139]. Its basic idea is to sort the N elements into L sorted stacks, which can then be
combined into the sorted sequence similar to merge sort [82]. The crucial property of
patience sort for our purposes is that the minimal number of sorted stacks is equal to
the length of the LIS of the original sequence [140].
To arrive at the minimal number of stacks, a greedy algorithm is sufficient [140].

Since this sorting algorithm is named after a game of cards – patience is just the
British name for solitaire – we will explain this process with a deck of cards. Though,
for clarity we will identify each card with an integer instead of the classical symbols.
Starting with a sequence S, we imagine that every entry is a card on our hands, with
the first entry on top of the deck. We take the top card from our deck and open up
a new stack with it. For the next card on top of our deck we go from left to right
through every stack already on the table and place this card on the first stack which
shows a value greater than our current card. If we do not find such a stack, we open
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Figure 5.3.: Visualization of patience sort using stacks of cards. The input sequence is S =
(3, 9, 4, 1, 2, 7, 6, 8, 0, 5). The single panels show snapshots at different times. In (e) all cards
are used and there are L = 4 stacks, i.e., the length of the LIS is L = 4.

up a new stack right of the last one. Repeating this procedure with every card of our
deck, will result in L stacks of cards which are sorted. To finish the sorting, we can
always take the card with the least value (like an L-way mergesort), which will always
be the top card of one stack, and arrive at a sorted deck.
However, we are only interested in the number of stacks L, thus we can simplify the

algorithm somewhat. First, we only ever need the top card of each stack, such that
it is sufficient to only save the topmost card instead of the whole stack. Second, the
top cards are always ordered due to construction, such that we do not have to go from
left to right and test every card in O(N) (consider the worst case, where the deck is
already sorted and N stacks are needed), but we can rather use binary search to find
the leftmost stack greater than our card in time O(lnN). Since this search has to be
performed once for each card, we arrive at a time complexity of O(N lnN).

3 9 7 8

41

2

6

0 5

Figure 5.4.: Visualization of the backpointer extension of patience sort to obtain a LIS instead
of only its length. The sequence is the same as in Figure 5.3 S = (3, 9, 4, 1, 2, 7, 6, 8, 0, 5). A
reversed LIS can be read off following the pointers starting at the last stack, 8→ 6→ 2→ 1,
resulting in s = (1, 2, 6, 8).

Note that we can not obtain an actual LIS this way but only its length. However,
going beyond what is needed for Article A.5, we can modify the algorithm slightly to
obtain an actual LIS. This modification is rather instructive, as it makes it easy to
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understand why the number of stacks is equal to the length L of the LIS. Every time
we put a card on a stack, we also save a pointer to the top card of the previous stack
on the card, as shown in Figure 5.5. This predecessor card is by construction smaller
than the current card and occurred earlier in the sequence. In the end we can follow
the backpointers from any card of the last stack to obtain the reverse of a LIS s. Since
the backpointers will always point to a neighboring pile, the length of s is equal to the
number of stacks [140].

3 9 7 8

41

2

6

0 5

Figure 5.5.: Visualization of a modification of the backpointer extension of patience sort
to obtain all LIS instead of only one. The sequence is the same as in Figure 5.3 S =
(3, 9, 4, 1, 2, 7, 6, 8, 0, 5). All four reversed LISs can be read off following the pointers starting
at the last stack, resulting in s1 = (1, 2, 6, 8), s2 = (1, 2, 7, 8), s3 = (3, 4, 6, 8), s4 = (3, 4, 7, 8).

We can again slightly extend this structure to not only read off one LIS but all LISs.
Therefore we construct a directed acyclic graph, i.e., a directed graph without cycles
(for definitions on the graph terminology see Section 6.1), to construct all LISs. At
each step we do not only store one pointer to the previous top card, but to every card
on the previous stack smaller than the current card. Every LIS will be encoded as
a traversal of this directed acyclic graph from one of the nodes included in the last
stack to a leaf. It should even be possible, using a dynamic programming approach,
to count the number of distinct LIS in an efficient way using this structure.

5.4. Results
In Article A.5 we compare the full distribution to the analytically known rate functions
[122, 123] for the left tail

lim
n→∞

1
N

lnP (L) = −2H0
(
L/
√
N
)

(5.5)

and right tail [121, 123]

lim
N→∞

1√
N

lnP (L) = −U0
(
L/
√
N
)
. (5.6)

Note that in contrast to the general form introduced in Equation (2.1) in Section 2.1,
the right-tail behavior behaves as P (L) ∝ e−

√
NU0(L), i.e., a leading

√
N term. For

the rate functions 2H0 and U0 closed form expressions exist. Using our distributions
at finite sizes, we can confirm clearly the convergence of the rescaled distributions to
the rate functions with increasing N in Figure 5.6.
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Figure 5.6.: Distribution P (L) of the length of the longest increasing subsequence of random
permutations. On the top rescaled (cf. right y-axis), such that it collapses on the right-tail rate
function U0, on the bottom rescaled (cf. left y-axis) to collapse on the left-tail rate function.
A similar plot is shown in Article A.5.

For the LIS of random walks, we gathered data of basically the whole distribution,
especially containing data for the edge case L = N coinciding with the expected
probability of all increments being positive, i.e., P (L = N) = 2−N . For the behavior
of the rate function Φ, we can estimate the leading order exponents to be Φl(L) ∼ L−1.5

for the left tail and Φr(L) ∼ L2.9 for the right tail. These are clearly different from
the random permutation case (left: H0(L) ∼ L−3, right: U0(L) ∼ L3/2).
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6. The Largest Biconnected Component
of Random Graphs

In the most abstract formulation graphs are mathematical objects describing relations
between other objects, which makes them useful in a wide variety of applications.
Graphs were long known and used in a mathematical context. The founding myth is
Euler’s approach to solve the Königsberger Brückenproblem, a riddle whether, given
the topology of the city Königsberg, it was possible to take a walk crossing every
bridge exactly once.1

Notably, the branch of random graph theory was founded in Reference [141] by Paul
Erdős and Alfréd Rényi in 1960, where they introduced and studied an ensemble of
random graphs. The graphs they studied, of which one example is shown in Fig-
ure 6.1(a), are named Erdős-Rényi graphs after them and will be introduced in more
detail in Section 6.4.2.

(a) Erdős-Rényi (b) Watts-Strogatz (c) Barabási-Albert

Figure 6.1.: Visualization of different types of random graphs. (a) Erdős-Rényi graph with
N = 30 nodes andM = 25 edges. (b) Watts-Strogatz graph with N = 30 nodes and a rewiring
probability of p = 0.1. (c) Barabási-Albert graph where in every iteration a node with m = 2
incident edges is added to the graph until there are N = 30 nodes.

In physics graphs became a very productive field around the year 2000 as the world
became more connected and computers and therefore data collection became ubiqui-
tous. At this time large amounts of data about networks, e.g., transportation networks,
the internet, social networks or protein interaction networks were collected and the
study of those networks showed that they had different properties in comparison to

1While it was impossible during Euler’s lifetime, after World War II two bridges were destroyed, such
that it is possible at time of writing.
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existing ensembles of random graphs [142–144]. This prompted the invention of ran-
dom graph ensembles capturing these new properties and allowing to study them with
mathematical machinery.

There are roughly two classes of random graph models on which the literature
focuses. On the one hand are graphs whose nodes have a typical degree, i.e., number of
incident edges, close to the mean degree k ≈ 〈k〉 and nodes with extremely high degrees
are statistically insignificant. Their degree distribution could be, e.g., Poissonian. The
Erdős-Rényi graph is the most studied model of this class.

Another influential model of this class is the Watts-Strogatz graph [145] as shown in
Figure 6.1(b). This random graph model addresses the small-world phenomenon, i.e.,
a property many social networks have, which typically show many local relations but
also some long reaching shortcuts. While the local relations are not very surprising,
since your friends are also often friends with each other, the long shortcuts lead to
unexpected behavior. The most famous experiment in this regard was in the 1960s
and is known as “six degrees of separation” [146]. Consider a letter without address
but only a name. To send it to the intended recipient, which is a random person,
you send it to someone you know, i.e., which is a neighbor of you in the social graph.
This process needs allegedly typically only six iterations before it reaches the intended
recipient.2

On the other hand there are scale-free graphs, which seem to be ubiquitous in
nature and show surprisingly different behavior. Their defining characteristic is that
their degree distribution follows a power law pk ∝ k−γ . That means that there is no
typical degree which determines the behavior, but the distribution of the degrees is
heavy tailed and nodes with very high degree are statistically significant. Often, the
variance or even the mean of the degree distribution are diverging depending on the
exponent γ. A selection of networks from very different backgrounds whose degree
distribution follows at least over a few decades a power law is shown in Figure 6.2.
The most influential model for this class is probably the Barabási-Albert graph. It

was introduced in Reference [144], about 20 years after the first random graph model
using a similar mechanism leading to scale-free graphs was introduced in Reference
[150]. An example Barabási-Albert graph is pictured in Figure 6.1(c). Scale-free
networks capture this universal property of many networks observed in reality, like
scientific citation networks or other social networks, as well as protein interaction
networks.
In scale-free networks, due to the heavy tailed degree distribution, there are few hubs

with very high degree and many nodes with very low degree. This leads to unexpected
properties concerning the robustness of those networks. While a disease, e.g., described
by the SIR model [66], which was already shortly introduced in Section 3.1, has to
be infectious beyond some threshold to survive, this threshold is zero on scale-free
networks [68]. On the other hand, scale-free networks are robust against random node

2Similarly there are “six degrees of Bacon” for the small world phenomenon in the movie industry
and the “Erdős number” for the scientific community (the Erdős number of the author of the thesis
at hand is 4 at the time of writing).
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Figure 6.2.: Degree distribution pk for a selection of real world networks. Each follows a
power law over a few decades hinting at their scale free nature. (a) Degree distribution of the
social network of some Twitter users, each node symbolizes a user and each edge a “follow”
relationship [147]. (b) Degree distribution of a citation network according to data of the
scientific search service Citeseer [148]. (c) Degree distribution of the network consisting of the
source files of the Linux project, each node is a source file and the edges show which files are
#included [149]. (d) Degree distribution of a gene regulatory network of a mouse genome
[148].

failure, explaining the robustness of, e.g., the internet [151].
Naturally, robustness is a very important property for networks. Especially when

designing networks, like power grids or communication networks, it is vital that the
functionality of the whole network is not compromised by the unavoidable malfunction
of single components. Sometimes robustness is an undesirable property, e.g., for disease
spreading. So to limit the spreading of disease among cattle, it would be worthwhile
to study the weak points of the current topology and use this knowledge to limit the
functionality of the network for disease spreading with minimal effort.
The remainder of this chapter will give a quick overview over the field of complex

networks with a focus on the robustness of networks in Section 6.2, before we will
formulate our research question in Section 6.3. Section 6.4 will give an explanation of
the models and algorithms used to arrive at the results of Article A.6, which will be
shortly summarized in Section 6.5. But first we will quickly introduce some definitions
in Section 6.1 to have a clear language for the following sections.

6.1. Definitions

Graphs are defined as the tuple G = (V,E). The node set V , contains the objects, the
edge set E contains their relation. The relations can be either directed (u, v) = e ∈
E ⊂ V × V or undirected {u, v} = e ∈ E ⊂ V (2) and may be weighted with a weight
we. Edges connecting a node with itself e = {u, u} do not occur in simple graphs. The
size of a graph is the number of nodes N = |V | and the number of edges is denoted
by |E|. Since Article A.6 does only study undirected and unweighted graphs, we will
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limit this chapter also only to this type.
Two nodes u and v are neighbors if {u, v} ∈ E. The edges {{u, v} | {u, v} ∈ E ∀v ∈

V } are called incident edges to u. The number of incident edges of u is its degree k.
The degree distribution of a graph pk is the probability that a node has the degree k.

A path is a sequence of edges between two nodes u and v, such that two consecutive
edges of the path always share a node, i.e., ({u, k1}, {k1, k2}, . . . , {ki, v}). A path
starting and ending in the same node is called cycle. Two nodes between which a path
exists are called connected. The maximal sets of nodes which are pairwise connected
are called connected components. A subgraph G′ is a part of another graph G = (V,E),
to be more precise G′ = (V ′, E′) with V ′ ⊂ V and E′ ⊂ E. A tree is a graph in which
each pair of nodes is connected by exactly one path.
The maximal sets of nodes between which pairwise two node-independent paths

exist, i.e., two distinct paths whose edges do not share any node except the start
and the end, are called biconnected components. The maximal sets of nodes between
which pairwise two edge-independent paths exist, i.e., two distinct paths which do not
have any common edges, are called bi-edge-connected components. The remainder of
a graph from which all nodes with degree less or equal q are iteratively removed, is
called q-core.

6.2. Current State of Research

One of the seminal papers founding the field “Physics of Complex Networks” is Refer-
ence [144], where Albert-László Barabási and Réka Albert show that a growth process,
where nodes are iteratively added preferentially to nodes with a high degree,3 leads
to graphs with a degree distribution following a power law p(k) ∝ k−3. Since growth
with preferential attachment is plausibly a very common process, it becomes under-
standable that scale-free networks appear in a wide range of contexts [152], natural
as well as cultural, as the selection in Figure 6.2 confirms. Note however that there
might be other processes also leading to scale-free networks.
An important property distinguishing scale-free networks from networks with a non-

heavy-tailed degree distribution is their robustness to failures. Reference [153] con-
ducts a study about the tolerance against errors and targeted attacks of Erdős-Rényi
graphs and Barabási-Albert graphs. It measures the functionality of the network as the
diameter , i.e., the longest of all shortest paths connecting all pairs of nodes. They show
that random errors, i.e., the removal of random nodes, in Erdős-Rényi graphs have
a larger impact on the functionality than random errors in Barabási-Albert graphs.
This is easy to understand since every node in an Erdős-Rényi graph is roughly equal,
while in a Barabási-Albert graph most nodes are only connected to very few other
nodes and have no influence on the functionality as no shortest path traverses them.
Interestingly, scale-free graphs seem to become susceptible to targeted attacks. The
diameter of a Barabási-Albert graph grows fast as the nodes with the highest degree,

3Note that this is the same idea used in the much earlier published article Reference [150], where it
is called cumulative advantage.
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which act as hubs, are removed. Erdős-Rényi graphs are not susceptible to these
targeted attacks, since there are no especially important nodes.

Similar studies on the robustness of networks were carried out. Some focusing on the
networks underlying our civilization, like power grids [154–156] or the internet [151,
157]. Some working on more general or more abstract graph models [153, 158–160].
This plethora of robustness studies uses many different observables to determine the
functionality of the network. While some of the more involved studies on power grids
model each node as producers and consumers influencing the frequency of the AC
current in the network, the more fundamental studies look at simpler observables, like
the size of the largest connected component [158] or the size of the largest biconnected
component [159].

We shall now look at bit closer at the latter study Reference [159]. Here biconnected
components are used as a proxy for the robustness of a network. A biconnected compo-
nent is a connected component which stays connected if any member node is removed
This way it is very intuitive that a network with a large biconnected component is
very robust against single node failures. Reference [159] takes an analytic approach
to express the mean size of the largest biconnected component exactly in the large N
limit given the degree distribution pk of the graph. This derivation assumes that the
connections of the nodes of the graph are independent and is therefore applicable to
Erdős-Rényi graphs and the configuration model [161], a graph ensemble drawing uni-
formly from every graph with a given degree distribution pk. We will here spend some
time to understand their reasoning as it fosters the understanding of the observable
we are interested in and their results will directly motivate our research question.
There are two cases, which have to be handled separately. Either there is a giant

connected component, i.e., a connected subgraph of size O(N), or there is none. For
the case that there is none, the uncorrelated nature of the ensembles in question leads
to almost all connected subgraphs being trees4 of size O(1), and since the size of the
largest connected component is always larger than the size of the largest biconnected
component, the expected relative size of the largest biconnected component vanishes
for large graphs, i.e., 〈S2〉 = 0.
Thus, we will now look at the more interesting case, where a giant connected com-

ponent exists. By definition, two nodes belong to the same biconnected component if
they are connected via two paths which have no common node, i.e., node-independent
paths. We can approximate this criterion with an upper bound if we ignore that the
two paths need to be node-independent. Since in the limit of large graphs the prob-
ability that the paths are not node-independent vanishes [162], this approximation
becomes exact in the large N limit. Under this approximation a node is part of the
biconnected component if at least two of its neighbors are part of the giant compo-

4As a qualitative argument, consider that there are O(N) connected subgraphs of size O(1). To form
a biconnected component there has to exist an edge originating at one connected component and
connecting to the same connected component, which has a probability proportional to the relative
size of this component, i.e., O(1/N). Combining this with the number of connected components
leads to a number of biconnected components of O(1), i.e., they are extremely rare for large graphs
[159].
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nent, since there will be paths across the giant component to the giant biconnected
component. Therefore we only need to study the probability of a node to be part of
the giant component. Let u be the probability that a node is not part of the giant
component, then Reference [163] shows a self-consistent equation to determine u. The
idea is that the chance not to be in the connected component is equal to the chance
that none of the neighbors are part of the connected component. First, we have to
introduce the excess degree distribution qk. This distribution describes the degree of
a random neighbor w of a node v, excluding the edge back to the node v. It differs
from the degree distribution pk of random nodes, since the probability to reach node
w when following a random edge of node v is proportional to the degree of w.5 More
precisely,

qk = (k + 1) pk+1
〈k〉

, (6.1)

where the +1 terms account for the edge back to v and the denominator is for normal-
ization [163]. Now consider the probability u that if we follow an edge we will arrive
at a node outside of the giant component. Since this node has k∗ neighbors (excluding
the node we originate from), all neighbors must not be part of the giant component,
which is the case with probability uk∗ . To arrive at an expectation value, we have to
average this over the distribution of the excess degree

u =
∞∑
k=0

qku
k, (6.2)

which we can solve – at least numerically – for u given the degree distribution pk.
Knowing what the probability is for a neighbor to not belong to the giant component

and knowing that for N →∞ a node will be part of the giant biconnected component
if it has two or more neighbors in the giant component, we arrive at

S2 = 1−
∑
k

pku
k −

∑
k

pkk(1− u)uk−1. (6.3)

The second term is the expected value for a node to have not a single neighbor in the
giant component and the third term is the expected probability for a node to have
exactly one neighbor in the giant component. One minus their sum is the expected
value of a node being in the giant biconnected component, which is at the same time
the expected relative size of the giant biconnected component. Note that 1−∑k pku

k

is the size of the giant component. Since there can not be a giant bicomponent without
a giant component, the two will always occur at the same time, except for the special
case of 1−∑k pku

k = ∑
k pkk(1− u)uk−1.

Further, the authors generalize this result to m-connected components, i.e., with m
node-independent paths, which also all arise at the same threshold value, though the

5This effect leads in social networks to the friendship paradox: Your friends have typically more
friends than you have [164].
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transition is of order m + 1 for these kind of graphs. That means that the growth of
the m-connected components with increasing connectivity is slower the larger m is.

Using this result we could now calculate the size of the biconnected component for
any Erdős-Rényi graph or configuration model ensemble, at least numerically. As an
example for an Erdős-Rényi graph where each edge occurs with probability p = 2/N ,
the degree distribution is known to be pk =

(N−1
k

)
pk(1 − p)N−1−k. Using this to

solve Equation (6.2) numerically and calculate Equation (6.3) results in a behavior
converging to to the value S2 = 0.473...

Next to these analytical results, there are a few papers looking at the distribution
of similarly simple observables in random graphs. Namely Reference [31] looks at the
distribution of the size of the giant component S including the very rare event tails and
compares the numerical results to an analytically known rate function (cf. Section 2.1),
which is known for Erdős-Rényi graphs above the percolation threshold [165]. The
results of the simulations in that study match the analytically known rate function
remarkably well, even for the finite sizes at which the simulations were done. More
interestingly, very recently Reference [37] was published, which looked at the full
distribution of the size of the 2-core S2-core. More general, the q-core is the remainder
of a graph after iteratively removing every node of degree less than q. This makes it
suited as a simple observable for the robustness of a network [166]. Consider a model
of components which fail, if they are connected to less than q other components, e.g.,
a simplified electrical network, where current can only flow through a node if it has a
source and a drain. The 2-core of this network will be the part of the network with
current flow. In Reference [37] it was found that the general shape of the distribution
P (S2-core) has a shape reminiscent of the distribution of the size of the largest connected
component S. Though, they are not similar as they can not be collapsed by a simple
rescaling of the axes.

6.3. Research Question

Now that we understand the analytical derivation of the mean value of the size of the
largest biconnected component, one obvious question is for higher moments or even
the whole distribution. Since there is a numerical study of another simple criterion
for robustness, namely the 2-core, we should compare these two observables. Also it
would be interesting to look into the qualitative differences when probing this quantity
on two fundamentally different graph ensembles. Therefore we formulate our research
question:

What is the distribution, including its low probability tails, of the size of
the largest biconnected component of Erdős-Rényi graphs and Barabási-
Albert graphs? Does a rate function exist and how does it compare to
other observables used for robustness?

This question inspired work, whose numerical results are shown in Article A.6.
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6.4. Models and Methods

6.4.1. Finding Biconnected Components

An efficient algorithm to identify all biconnected components is formulated by Hopcroft
and Tarjan in Reference [167]. The basic idea is to use a depth-first search to explore
the graph [82]. The depth-first search works by starting with a stack containing an
arbitrary node, putting all its unmarked neighbors on the stack, marking them and
removing the entry for the node itself from the stack. Each time a new node is put
on the stack, the process is interrupted and started on the new node, leading to the
depth-first part of the name. Clearly, at any time there is a path from the top node of
the stack to any other node on the stack. To determine the biconnected components,
we have to ensure a second independent path, i.e., it may traverse only nodes which
are not currently on the stack. This can be efficiently done by storing some additional
information at each node: the depth of the search and the lowpoint.

1
0, 0

2
1, 0

3

2, 0

4

3, 0

5
3, 3

6
4, 3

7
5, 3

Figure 6.3.: Annotated graph after the depth-first search starting at node 1. The process to
determine the annotations is shown in Appendix B.4. Next to each node the depth and lowpoint
are noted. The tree traversed by the depth-first search is marked with thick edges. Node 3 is
an articulation point, since for a child node the criterion is fulfilled: lowpoint(5) ≥ depth(3).
5 is also an articulation point since lowpoint(6) ≥ depth(5). Node 1 is not an articulation
point, because it has only one child in the tree, i.e., only one thick edge. The two biconnected
components separated by the articulation nodes are thus constituted by the nodes {1, 2, 3, 4}
and {5, 6, 7}.

The depth is basically the number of elements on the stack at the visit of a node
and the lowpoint is the smallest depth of any node on the stack which is connected by
a path of non-stacked points. As soon as these values for every node are determined,
we can identify the articulation points, which separate the biconnected components
from each other. Namely, u is an articulation point, if the depth of a node u is less or
equal than the lowpoint of one of its children in the tree traversed by the depth-first
search (marked thick in Figure 6.3), i.e., the nodes visited after u during the depth-
first search. For the starting node there is an exception: it is an articulation point iff
it has more than one child. Since all annotations are possible in constant time, this
algorithm has the same time complexity as the depth-first search of O(|V |+ |E|) [82].
A more detailed and illustrated explanation is available in Appendix B.4.
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6.4.2. Erdős-Rényi Graphs
As mentioned above, the Erdős-Rényi graph is probably the first rigorously studied
random graph ensemble [141]. It comes in two variants. One with a fixed number of
edges |E| = M and one where every edge exists with probability p and has thus a fluc-
tuating number of edges. Here, we will only study the latter type.6 The connectivity
of an Erdős-Rényi graph c = Np is equal to the expected degree of of each realization.

(a) c = 0.5 (b) c = 1.0 (c) c = 2.0

Figure 6.4.: Visualization of Erdős-Rényi graphs for different values of the connectivity c,
which determines the average degree 〈k〉 = c of the resulting graph.

This ensemble is quite well understood, its degree distribution is known to be

pk =
(
N − 1
k

)
pk(1− p)N−1−k, (6.4)

the rate function of the size of the largest connected component is known [165] and
a percolation transition happens at cc = 1, below which the graph consists of many
isolated nodes or tree-like subgraphs with size O(1) (cf. Figure 6.4(a)) and above which
a giant component of size O(N) exists (cf. Figure 6.4(c)).
The construction of a realization is rather straight forward, one can either start with

a graph of N nodes and an empty edge set, iterate over the N(N − 1) possible edges
and add each with probability p = c/N . A faster method would be to first draw the
number of edges in the graph M from a binomial distribution and then draw M times
two nodes which are not already neighbors and insert an edge between them.
As a specialized Monte Carlo change move to generate Markov chains of Erdős-

Rényi graphs (cf. Section 2.2.3), choose a node u uniformly at random, delete all its
neighbors and add each possible edge e ∈ {{u, v} | v ∈ V \ u} with probability p.

6.4.3. Barabási-Albert Graphs
As already mentioned above, Barabási-Albert graph realizations are constructed with
a growth process. Since we use a slightly modified approach, we will not describe the

6But note that Figure 2.4 shows a large part of the distribution for the former case, which is quali-
tatively very similar to the distribution of the latter case shown in Article A.6.
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original model [144], but our modified version.
An ensemble of Barabási-Albert graphs has, apart from the number of nodes N ,

two parameters: m, the number of edges added for every new node (and therefore
〈k〉 = 2m) and m0 ≥ m, the number of nodes with which to start. Independent of the
choice of these parameters the degree distribution will follow a power law p(k) ∝ k−3

for large graphs. While originally only integers were allowed for m, our modification
allows also fractional values. This is mainly because by construction for m = 1 a tree
will arise as in Figure 6.5(a) and for m = 2 the whole graph will be a biconnected
component as in Figure 6.1(c). Therefore the interesting graphs will arise for values
of m in between as shown in Figures 6.5(b) and 6.5(c).

(a) m = 1.0 (b) m = 1.3 (c) m = 1.5

Figure 6.5.: Visualization of Barabási-Albert graphs for different values of m. The case of
m = 1 in (a) leads to a tree due to the regular construction.

For the construction one starts with a fully connected graph of m0 nodes. In every
iteration one node is added and connected to m′ of the already existing nodes. Here
our modification comes into play, as a fractional value of m is interpreted as

m′ =
{
dme with probability p = m− bmc
bmc with probability 1− p.

(6.5)

The probability pi with which an existing node i is connected to the new node is
proportional to its degree pi = ki/

∑
j kj . This way new nodes will preferentially

attach to nodes with a high degree, which will in turn become even more preferable
for new nodes.
The usual implementation is to maintain an array where each node i appears ki

times and draw one entry uniformly at random from it to determine a neighbor of
a new node. This growth process is iterated until the size of the graph is N . As
a change move for Markov chain Monte Carlo simulations the black box approach
(cf. Section 2.2.3) can be applied directly and works well.
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6.5. Results

Article A.6 finds the distribution of the size of the largest biconnected component S2
over almost its full support for multiple system sizes and graph ensembles. From this
the empirical rate function (cf. Section 2.1) is calculated, which shows even for finite
sizes, which were simulated, a convincing convergence, as shown in Figure 6.6(a).
Therefore the large deviation principle seems to hold and biconnected components,
which do not have the typical size are exponentially suppressed in all scrutinized
ensembles.
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Figure 6.6.: (a) Comparison of the rate function of the size of the largest biconnected com-
ponent S2 for Erdős-Rényi graphs of different sizes. The convergence to a limiting form for
large sizes is already well visible at these finite sizes. (b) Comparison of the distribution of
the size of the largest biconnected components and 2-cores in Barabási-Albert graphs with
N = 500 nodes and m = 1.3. Apparently the behavior is very similar in the main region but
qualitatively different in the left tail below probabilities of P . 10−20. (Similar plots are also
shown in Article A.6.)

Regarding the comparison with the size of the 2-core, for Erdős-Rényi graphs the
behavior is generally very similar to the already known rate function of the 2-core [37]
at the same connectivity. The only minor deviation from the 2-core behavior is at very
low probabilities in the left tail above the percolation threshold. For Barabási-Albert
graphs the results are more interesting. While they are again very similar in the main
region, we can observe a qualitative difference in the shape of the distribution in the
left tail, which is well visible in Figure 6.6(b). The biconnected component shows a
very similar non-monotonous shape as for the Erdős-Rényi graph above the critical
connectivity (which coincides with a phase transition in our artifical temperature en-
semble,7 as already shown for the size of the connected component [31]). The size of

7This can also be observed in Figure 2.4, where the biased histograms PΘ(S) at one temperature
show a two-peak structure, which is a telltale sign for first order phase transitions.
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the 2-core behaves very differently, as the shape of its distribution is convex. Since the
deviation only occurs for probabilities of around 10−20 or lower, our large deviation
approach is necessary to observe this behavior.
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Laplace’s approximation 7
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moment generating function 6
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patience sort 72
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phase transition 59, 87
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qhull A free and open source C/C++ li-
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rejection method A general technique
to generate random numbers according to
a distribution. 175
replica-exchange Wang Landau 24

scaled cumulant generating function
6
shoelace formula 54
simple sampling 9
SIR model 30, 78
SK Sherrington-Kirkpatrick 58, 59
subsequence 67

Tracy-Widom distribution 68–71
transition path sampling 13, 14
tree 80

Ulam’s problem 67, see LIS
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Ziggurat method A modern procedure
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A. Publications

This chapter shows the central publications of this thesis. Articles A.1 and A.2 are
both published in the peer-reviewed journal Physical Review E. Article A.3 is accepted
by the Journal of Physics: Conference Series, a peer-reviewed, open-access journal.
Article A.4 is published in the peer-reviewed journal Europhysics Letters. Article A.5
is published in the peer-reviewed journal Physical Review E. Article A.6 is published
in the peer-reviewed European Physical Journal B.

Each of these publications, respectively drafts, will be printed with a concise state-
ment specifying the contributions of all coauthors in Sections A.1 to A.6.

A.1. Convex hulls of random walks in higher dimensions: A large-deviation
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A.4. Ground state energy of noninteracting fermions with a random energy
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A.5. Large deviations of the length of the longest increasing subsequence of
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The correctness of the statements detailing the contributions is confirmed by the
adviser of this thesis.

(Signature: Prof. Dr. Alexander K. Hartmann)
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A. Publications

A.1. Convex hulls of random walks in higher dimensions: A
large-deviation study

The first author, Hendrik Schawe, is the author of the thesis at hand. Alexan-
der K. Hartmann is the supervising professor of H. Schawe. Satya N. Majumdar
is directeur de recherche at the Laboratoire de Physique Théorique et Modèles Statis-
tiques (LPTMS) at the Université Paris–Sud in Orsay, France

This publication is a follow-up project to Reference [39], which looked at a very
similar problem in the plane, and Reference [40], which belongs to the same DFG
grant HA 3169/8-1 and is also limited to the plane. Since the publication at hand
operates in higher dimensions no code was shared from the above mentioned projects
and simulation and evaluation programs were written from scratch by H. Schawe.
During frequent meetings of H. Schawe with A. K. Hartmann and some meetings
with S. N. Majumdar during a one month stay at the LPTMS, the state and target
of the project and possible interesting quantities were discussed. The first draft was
prepared by H. Schawe with direct feedback from A. K. Hartmann. At this stage
S. N. Majumdar gave some ideas for further improvements, which were incorporated.
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Convex hulls of random walks in higher dimensions: A large-deviation study

Hendrik Schawe* and Alexander K. Hartmann†
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91405 Orsay, France

Satya N. Majumdar‡
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The distribution of the hypervolume V and surface ∂V of convex hulls of (multiple) random walks in higher
dimensions are determined numerically, especially containing probabilities far smaller than P = 10−1000 to
estimate large deviation properties. For arbitrary dimensions and large walk lengths T , we suggest a scaling
behavior of the distribution with the length of the walk T similar to the two-dimensional case and behavior of
the distributions in the tails. We underpin both with numerical data in d = 3 and d = 4 dimensions. Further, we
confirm the analytically known means of those distributions and calculate their variances for large T .

DOI: 10.1103/PhysRevE.96.062101

I. INTRODUCTION

The random walk (RW) is first mentioned [1] with this
name in 1905 by Pearson [2] as a model, where at discrete
times, steps of a fixed length are taken by a single walker in a
random direction, e.g., with a random angle on a plane in two
dimensions. This was later generalized to random flights in
three dimensions [3] and RWs on a lattice in d dimensions [4].
A few decades later even more generalized models appeared,
e.g., introducing correlation [5–7] or interaction with its
past trajectory [8–10], its environment [11–15], or other
walkers [16,17]. Despite the plethora of models developed for
different applications, still simple isotropic RWs are used as
an easy model for Brownian motion and diffusion processes
[11,15,18], motion of bacteria [19,20], financial economics
[21], detecting community structures in (social) networks
[22,23], epidemics [24], polymers in solution [25–27], and
home ranges of animals [28,29].

The most important quantity that characterizes RWs is the
end-to-end distance and how it scales with the number of
steps, giving rise to an exponent ν, i.e., the inverse fractal
dimension. To describe the nature of different RW models
more thoroughly, other quantities can be used. Here, we are
interested in analyzing the “volume” and the “surface” of the
RW, which can be conveniently defined by the corresponding
quantities of the convex hulls of each given RW. These
quantities are used, usually in two dimensions, to describe
home ranges of animals [30,31]. But also, very recently, to
detect different phases in intermittent stochastic trajectories,
like the run and tumble phases in the movement of bacteria
[32]. The convex hull of a RW is the smallest convex polytope
containing the whole trace of the RW, i.e., it is a nonlocal
characteristic that depends on the full history of the walker,
namely all visited points.

The most natural statistical observables associated to the
convex hull of a random trajectory are its (hyper-) volume

*hendrik.schawe@uni-oldenburg.de
†a.hartmann@uni-oldenburg.de
‡satya.majumdar@u-psud.fr

and its (hyper-) surface. The full statistics of these two
random variables are nontrivial to compute even for a single
Brownian motion in two or higher dimensions. Even less is
known on the statistics of these two random variables for a
discrete-time random walk with a symmetric and continuous
jump distributions. In fact, most publications concentrate on
the area and perimeter of convex hulls for two-dimensional
RWs. The mean perimeter and the mean area of a single
random walk in a plane, as a function of the number of steps
(in the limit of large number of steps with finite variance of
step lengths where it converges to a Brownian motion), are
known exactly since more than 20 years [33,34]. These results
for the convex hull of a single Brownian motion in a plane have
recently been generalized in several directions in a number of
studies. These include the exact results for the mean perimeter
and mean area of the convex hull for multiple independent
Brownian motions and Brownian bridges in a plane [35,36],
for the mean perimeter of the convex hull of a single Brownian
motion confined to a half plane [37], and for the mean volume
and surface of the convex polytopes in arbitrary dimensions d

for a single Brownian motion and Brownian bridge [38–40].
Much less is known for discrete-time random walks with
arbitrary jump length distributions. Very recently the mean
perimeter of the convex hull for planar walks for finite (but
large) walk lengths and arbitrary jump distributions were
computed explicitly [41]. For the special case of Gaussian
jump lengths, an exact combinatorial formula for the mean
volume of the convex hull in d-dimensions was recently
derived [39]. In d = 2, the asymptotic (for large number of
steps) behavior of the mean area for Gaussian jump lengths
was derived independently in Ref. [41]. Also the convex hulls
of other stochastic processes like Lévy flights [42,43], random
acceleration processes [44], or branching Brownian motion
with absorption [24] were under scrutiny recently.

Analytical calculations of the variance or higher moments
turned out to be much more difficult [45,46]. In absence
of any analytical result for the full distribution of the
volume and surface of the convex hull of a random walk, a
sophisticated large-deviation algorithm was recently used to
compute numerically the full distribution of the perimeter and
the area of the convex hull of a single [47] and multiple [48]

2470-0045/2017/96(6)/062101(9) 062101-1 ©2017 American Physical Society
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random walks in two dimensions. Amazingly, this numerical
technique was able to resolve the probability distribution down
to probabilities as small as, e.g., 10−300 [47,48]. In this work,
we will use simulations to obtain the distribution of the volume
V and surface ∂V of the convex hull of a single random
walk with Gaussian jump length distribution in dimensions
d ∈ {3,4} over a large range of its support. In particular, this
range is large enough to include large deviations, here down to
probability densities far smaller than P (V ) = 10−1000. While
previous work [47,48] suggested that the area and perimeter
distribution obeys the large deviation principle in d = 2, which
was later proven for the perimeter [49], our results suggest that
the same holds for higher dimensions. Regarding the scaling
behavior of the mean and of the variance, we also study higher
dimensions up to d = 6. Also we generalize scaling arguments
to higher dimensions which were previously used to estimate
the properties of these distributions for d = 2 [47].

The remainder of the paper is organized as follows. We
will first introduce the RW model, give an overview for the
calculation of convex hulls in higher dimensions, and describe
the sampling technique used to reach the regions of sufficiently
small probabilities in Sec. II. The presentation of our results is
split into two parts. Section III A compares our numerically
obtained means with the analytically derived values from
Refs. [38,39] to check that our results are consistent with
the literature. Also values for the variances for single and
multiple RWs are presented. The behavior of the distributions,
especially in their tails, is presented in Sec. III B. Section IV
concludes and gives a small outlook to still open questions.

II. MODELS AND METHODS

A. Random walks

A random walk [2,4] in d dimensions consists of T step
vectors δi such that its position at time τ is given as

x(τ ) = x0 +
τ∑

i=1

δi ,

where x0 is the starting position and chosen in the following
always as the origin of the coordinate system. Thus, a
realization of a walk can be characterized as a tuple of the
displacements (δ1, . . . ,δT ). We will denote the set of visited
points as P = {x(0), . . . ,x(T )}. We draw the steps δi from
an uncorrelated multivariate Gaussian distribution with zero
mean and unit width G(0,1), i.e., d independent random
numbers per step. Two examples for dimensions d = 2 and
d = 3 are visualized in Fig. 1. While walks on a lattice show
finite-size effects of the lattice structure [47], especially in the
region of low probabilities, the Gaussian displacements lead to
smooth distributions. Note that in the limit T → ∞ Gaussian
and lattice RWs do not behave differently. Both converge to
the continuous-time Brownian motion [36].

The RW is very well investigated [1], especially it is
known that the end-to-end distance r , and in fact every
one-dimensional observable, scales as r ∝ T ν with ν = 1/2.
This exponent ν is the same in any dimension and characteristic
for diffusion processes.

(a) (b)

FIG. 1. Examples for Gaussian random walks in d = 2 and d = 3.
Their convex hull is visualized in red. (a) d = 2, T = 2048 and
(b) d = 3, T = 2048.

B. Convex hulls

For a given point set P its convex hull C = conv(P) is the
smallest convex polytope enclosing all points Pi ∈ P , i.e., all
points Pi lie inside the polytope and all straight line segments
(Pi,Pj ) lie inside the polytope. In Fig. 1 two examples for
d = 2 and d = 3 are shown.

Convex hulls are a well-studied problem with appli-
cations from pattern recognition [50] to ecology studies
[51]. They are especially important in the context of com-
putational geometry, where next to a wide range of di-
rect applications [52,53] the construction of Voronoi dia-
grams and Delaunay triangulations [54] stand out, which
in turn are useful in a wide range of disciplines [55].
Note that a lower bound for the worst-case time complexity
of an exact convex hull algorithm for T = |P| points is
�(T �d/2�) [56–58], which is the order of possible facets,
i.e., exponential in the dimension. Although, there are approx-
imate algorithms [59,60] that probably would make the exami-
nation of higher-dimensional convex hulls feasible, we are only
examining the convex hulls up to d = 6 using exact algorithms.

We measure the (hyper-) volume V , e.g., in d = 3 the
volume, and the (hyper-) surface ∂V , e.g., in d = 3 the surface
area. Determining surface and volume of a high-dimensional
convex polytope is trivial given its facets fi , which are (d − 1)-
dimensional simplexes. Choosing an arbitrary fixed point p

inside the convex polygon, one can create a d-dimensional
simplex from each facet fi , such that their union fills the entire
convex hull (cf. Fig. 2(a) for a d = 2 example). Therefore, the
volume can be obtained by calculating

V =
∑

i

dist(fi,p)ai/d,

where dist(f,p) is the perpendicular distance from the facet fi

to the point p and ai is the surface of the facet. The surface
of a (d − 1)-dimensional facet is its (d − 2)-dimensional
volume, which can be calculated with the same method
recursively, until the trivial case of one dimensional facets,
i.e., lines. Determining the surface uses the same recursion, by
calculating ∂V = ∑

i ai .

To foster intuition, this method is pictured for d = 2 in
Fig. 2(a). Here, the facets are lines and the volume of the
simplex is the area of the triangle. The perpendicular distances
are visualized as dashed lines.
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FIG. 2. Visualization of (a) the idea to calculate the volume of a
convex polygon given its facets and an interior point, perpendicular
distances are shown with dashed lines. In (b) and (c) examples of two
consecutive recursive steps of the quickhull algorithm are shown. The
point d is left of and farthest away from (a,c). Parts of the convex
hull are black, discarded points are light gray.

In the scope of this study, we use the quickhull algorithm
[61–63], and its excellent implementation in the Qhull library
[64]. Quickhull is a divide-and-conquer algorithm applicable
in arbitrary dimensions. For clarity, the algorithm will be
explained for d = 2, since it makes the central idea clear. The
technical details and the generalization to higher dimensions
are well explained in Ref. [64].

Start with two points a,b on the convex hull, e.g., the points
with minimum and maximum x-coordinate. Determine the
point c left (when “looking” a → b) of and farthest away
from the edge (a,b) and discard all points inside the polygon
(a,b,c). Repeat this step recursively with the edges (a,c) and
(c,b) until there are no points on the left side of the current
edge. All edges created in this way on the bottom level of
the recursion are part of the convex hull. Two steps of this
recursion are pictured in Figs. 2(b) and 2(c). The same process
is repeated recursively with the point c′ left of and farthest
away from the inverse edge (b,a).

C. Sampling

We performed Markov chain Monte Carlo simulations to
examine the distributions of the volume V and the surface ∂V

of the convex hull of RWs in dimensions d ∈ {3,4}. To collect
large-deviation statistics, i.e., obtain not only the peak, but
also the tails of the distribution, we use both the classic Wang-
Landau (WL) sampling [65,66] and a modified Wang-Landau
sampling [67–69] with a subsequent entropic sampling [70,71]
run. In contrast to similar studies [47,48] no temperature-based
sampling scheme was used, since the difficulties to find
suitable temperatures and regarding equilibration mentioned
in Ref. [47] are even worse in higher dimensions.

Both sampling techniques generate Markov chains of
configurations, where here configurations are realizations,
each given by the tuple of RW displacements (δ1,..,δT ). One
only needs a function yielding an “energy” of a configuration
and a way to change a configuration to a similar configuration.
As energy we simply use the observable of interest S, i.e., either
the volume V or the surface ∂V . To change a configuration,
we replace a randomly chosen step δi of the RW with a
new randomly drawn step. Because all points x(τ ) for τ � i

change, this is a global change of the walk. Though, this does
not lead to a severe computational overhead, because after the

update the convex hull has to be calculated again from scratch
in any case.

For both WL versions at first a lower and upper bound of
the observable S needs to be defined and the range in between
is subdivided in overlapping windows, depending on system
size T . While the windows can introduce errors in the results,
which can lead to neighboring windows that overlap does
not match, this phenomenon was not observed in this study.
Also, small systems in low dimensions were sampled using
the temperature-based method from Ref. [47], which does
not use windows, and showed no noteworthy deviations from
either of the WL variations. Also, for the present work it was
sufficient to sample each window independently in parallel.
Therefore, it was not necessary to apply a replica-exchange
enhancement [72].

In the beginning, we start with an arbitrary configuration
ci of the walk. Afterwards we repeatedly propose random
changes each leading to a new configuration ci+1 and accept
each with the Metropolis acceptance probability,

pacc[S(ci) → S(ci+1)] = min

(
g[S(ci)]

g[S(ci+1)]
,1

)
, (1)

where g is an estimate for the density of states—basically the
wanted distribution. If g equals the true density of states this
will result in every S being visited with the same probability,
i.e., a flat histogram of S. Since we do not know the true
density of states in advance, WL iteratively improves the
estimate g. Therefore, every time a value of S is visited, g(S)
is increased. The original article suggests to multiply g(S)
with a fixed factor f to perform the increase, i.e., g(S) 	→
g(S)f , and after an auxiliary histogram fulfills some flatness
criterion reduce this factor f 	→ √

f . This is repeated until f

falls below some beforehand defined threshold ffinal (here,
ffinal = 10−8). Since the acceptance ratio changes during
the simulation, detailed balance does not hold, such that
systematic errors are introduced. To mitigate this, a better
schedule to modify g is introduced in [68], which reduces the
systematic errors. Basically, the flatness criterion is removed
and the factor by which to increase g(S) when visiting S is
a function of the Monte Carlo time t of the simulation, i.e.,
ln[g(S)] 	→ ln[g(S)] + t−1. The sampling terminates as soon
as as t−1 � ffinal (here, ffinal = 10−5). This has the added
benefit that the simulation time does not depend on some
flatness criterion, which is hard to predict, but is at most 1/ffinal

Monte Carlo sweeps.
To remove the systematic error completely, one can use en-

tropic sampling [70,71], i.e., fix the so far obtained estimate g

and sample the system using the same acceptance as before
from Eq. (1). The entropic sampling pass, which due to the
fixed g obeys detailed balance and is thus not subject to the
systematic error of the WL sampling, will calculate corrections
for the initial estimate g. If the estimate g is close enough to
the density of states, it should be able to mitigate the (small)
systematic error. Finally, one creates a histogram H of the
visited S to arrive at a corrected g̃(S) = g(S)H (S)/〈H 〉 [71],
where 〈H 〉 is the average number of counts of the histogram.

During this simulation, the value S of the configuration
may not leave its window, thus changes to configurations
outside of the window are rejected. This also means that
the first configuration must be within the window and is
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therefore obtained via a greedy heuristic. The final distribution
is obtained as follows: For mutually overlapping windows, the
corresponding densities are multiplied by factors such that
in the overlapping regions the densities agree as much as
possible. Finally, the density obtained in this way is normalized
yielding the whole distribution. To estimate the errors of the
distribution, this simulation is done a couple of times and the
standard error of the single bins is used as an error estimate.

For the results, which we will present in the following
section, we used data from both sampling techniques and in
some cases merged them. Comparisons of both techniques
showed that the errors introduced by WL have no considerable
influence on our results (not shown).

For the determination of mean and variances of convex hull
volume and surface the contribution of the tails are negligible,
thus we used simple sampling, which enables the simulation
of longer walks, i.e., larger values of T , in a larger range of
dimensions d = 2, . . . ,6,

III. RESULTS

A. Mean and variance

At first, we will verify our simulations by comparing with
some analytically known results [33,38] for the mean volume
V and surface ∂V scaled appropriately as μV = 〈V 〉/T dν

and μ∂V = 〈∂V 〉/T (d−1)ν . The scaling comes from the r ∝
T ν scaling of the RW end-to-end, distance, with ν = 1

2 , in
combination with the typical scaling V ∝ rd and ∂V ∝ rd−1.
For large T it is known [38] that

μ∞
V =

(
π

2

)d/2

�

(
d

2
+ 1

)−2

, (2)

μ∞
∂V = 2(2π )(d−1)/2

�(d)
. (3)

This simulation uses simple sampling to sample 106 (fewer for
d = 6 resulting in larger uncertainties) sufficiently long walks
from Tmin = 128 up to Tmax = 262 144.

There is an exact result for the mean Volume of the convex
hull for finite T [39]:

〈V 〉 = 2−d/2

�(d/2 + 1)

∑
n1,...,nd

1√
n1 . . . nd

I (n1, . . . ,nd ), (4)

where 1 � ni � T are integers and

I (n1, . . . ,nd ) =
{

1 if n1 + . . . + nd � T

0 else .

For example, for d = 2 and d = 3 this results in

〈V2〉 = 1

2

T∑
i=1

T −i∑
j=1

1√
ij

, (5)

〈V3〉 = 23/2 × 4

3
√

π

T∑
i=1

T −i∑
j=1

T −i−j∑
k=1

1√
ijk

, (6)

respectively. The number of elements in the sums grows with
O(T d ) in the number of steps T and the dimension d, such that
a numerical evaluation is only feasible for rather small T and
d. We calculated some exact values to ensure the quality of

0

1

2

3

4

5

6

102 103 104 105

μ

T

μ∂V

μV

exact
fit
d = 2
d = 3
d = 4
d = 5
d = 6

FIG. 3. Scaled mean of the surface μ∂V = 〈∂V 〉/T (d−1)ν (open
symbols) and volume μV = 〈V 〉/T dν (solid symbols) for different
dimensions (different shapes) and walk lengths T obtained by 106

samples each. Lines are fits [cf. Eq. (8)] to extrapolate for T → ∞.
Crosses are exact values [cf. Eq. (4)] and show very good agreement
with the extrapolation. The asymptotic values are shown in Table I.
Fits disregard small walk lengths for higher dimensions, since the
expansion is valid for large T . To be precise, the fit ranges are
d � 5: T � 256 for the surface and d � 5: T � 512 for the volume.
They are chosen such that χ 2

red reaches a plateau, i.e., does not
change significantly if even larger T are ignored (same ranges for
the variances). The goodness of fit χ 2

red is between 0.3 and 1.2 for all
fits. Error bars are smaller than the line of the fit.

our simulations and the extrapolation. These are marked with
crosses in Fig. 3.

To estimate the T → ∞ limit asymptotic value μ∞
V , it is

necessary to extrapolate measurements for different lengths
T of the walk. Recently in Ref. [41], the asymptotic large T

expansion of the mean area of the convex hull of a 2D Gaussian
random walk was worked out explicitly. For Gaussian jump
distribution with zero mean and unit variance, it was found
that the mean area 〈A〉 of the convex hull of a walk of T steps
has the asymptotic expansion for large T ,

〈A〉
T

= π

2
+ γ

√
8π T −1/2 + π (1/4 + γ 2) T −1 + o(T −1),

(7)

where the constant γ = ζ (1/2)/
√

2π = −0.58259 . . . . This
exact result in 2D leads to a natural guess in higher dimensions
for the asymptotic large T expansion of the mean volume of
the convex hull, namely,

〈V 〉
T dν

= μV + C1 T −1/2 + C2 T −1 + o(T −1) . (8)

This guess produces very good fits, shown in Fig. 3, with
values in very good agreement with the expectations. We use
the same function for the surface and the variances. Though
small values of T need to be excluded from the fits, especially
for high dimensions. The precise fit ranges are listed in the
caption of Fig. 3.

The obtained asymptotic values are listed in Table I. Mind,
that the error estimates are purely statistical and do not take
into account higher order terms than those present in Eq. (8).
To make matters worse, not the same large system sizes could
be reached for higher dimensions due to the exponentially
increasing time complexity [56].
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TABLE I. Analytically expected (top, rounded to four decimal
places) and from measurements extrapolated (bottom) asymptotic
mean and variance of volume, respectively, surface. Analytical values
for the variances are unknown (except for Brownian bridges [46]).
Though for the perimeter (d = 2) rigorous bounds [73] are known
σ∞

∂V
2 ∈ [2.65 × 10−3,9.87]. Error estimates for the last column are

obtained by Gaussian error propagation.

d μ∞
V μ∞

∂V σ∞
V

2 σ∞
∂V

2 σ∞
V

μ∞
V

2 1.5708 5.0132
3 1.1140 6.2832
4 0.6168 5.2499
5 0.2800 3.2899
6 0.1077 1.6493
2 1.5705(3) 5.0127(5) 0.3078(3) 1.077(1) 0.3532(2)
3 1.1139(2) 6.2832(9) 0.1778(2) 3.093(3) 0.3785(2)
4 0.6164(1) 5.2473(10) 0.05882(7) 2.808(3) 0.3932(2)
5 0.2801(1) 3.2909(9) 0.01274(2) 1.279(2) 0.4032(3)
6 0.1077(1) 1.6492(6) 0.00193(1) 0.351(1) 0.4080(5)

Also, we looked at the average volume μV = 〈V 〉/T dν and
surface μ∂V = 〈∂V 〉/T (d−1)ν of the convex hulls of multiple
RWers with n ∈ {2,3,10,100} independent RWs in d = 3
dimensions, which are tabulated in Table II. We determined
the listed values in the same way as before with a fit to Eq. (8)
(no figure shown) within the same ranges as single walks.

Since the single steps δi are independent, two walkers,
i.e., the n = 2 case, can be joined at the origin to one walk
with twice the number of steps [74], thus μ∞

V2
= 2dνμ∞

V and
μ∞

∂V2
= 2(d−1)νμ∞

∂V are the exact mean values for this case. The
numerical data is within statistical errors compatible with this
expectation. Though, for n > 2 this is not as easy anymore. We
are not aware of any other published expectations for d � 3.

We have performed the same analysis (no figure
shown) for the variances σ 2

V = Var (V )/T 2dν and σ 2
∂V =

Var (∂V )/T 2(d−1)ν and the same remarks apply.
For the ratio between standard deviation and mean,

lim
d→∞

σ∞
V

μ∞
V

= 0

is conjectured [38]. Our data shows no downward trend for
this ratio as shown in the last column of Table I.

The argument of Ref. [38] is that the expectation of the
second moment factorizes to the square of the first moment,

TABLE II. Analytically expected (top) and from measurements
extrapolated (bottom) mean and variance of the volume, respectively,
surface of the convex hull of n independent RWs in d = 3 dimensions.
Analytical values for the variances are unknown. The quality of fit
χ 2

red for all fits is between 0.4 and 1.7.

n μ∞
V μ∞

∂V σ∞
V

2 σ∞
∂V

2

2 3.151 12.566
2 3.153(1) 12.572(2) 1.427(1) 12.40(1)
3 5.332(1) 17.644(2) 3.796(4) 21.66(2)
10 17.695(2) 37.528(3) 22.54(3) 48.65(4)
100 66.233(7) 85.563(5) 68.65(10) 56.44(7)
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FIG. 4. Distribution of the volume of a d = 4 RW for different
system sizes T . The inset shows the peak region in linear scale.

if all facets are orthogonal to each other. Since in high
dimensions random vectors are with very high probability
almost orthogonal, this suggests that the difference of these
quantities, which is the variance, should be far smaller than
each of them, i.e., the squared mean. Though, in the dimensions
under scrutiny, i.e., d � 6 this effect seems not to dominate,
because the facets have nonnegligible parallel components.

It is, of course, hard to estimate for which dimension the
orthogonality starts to dominate. As a crude non-rigorous
argument we take the scalar product of two random normalized
vectors, which approximate the normal vectors of the facets.
While its mean value is zero, its variance is v = 1/d. This
variance is a measure for how parallel the two vectors are.
Intuitively, it is clear that in d = 2 (v = 1/2) and d = 3
(v = 1/3) most facets have quite large and certainly not
negligible parallel components. Then, for d = 6 the variance
of v = 1/6 is not significantly smaller. We would assume that
the factorization could dominate the other effects if the parallel
component is far smaller—say, 1/20 or 1/100.

Therefore, to draw any conclusions, one should gather
results for d 
 6, which may be possible using some fast
approximation scheme for convex hulls in high dimensions,
though this is beyond the scope of this study.

B. Distributions

In addition to the first moments shown in the previous
section, here we look at the actual distribution over a large part
of the support. Since the Gaussian distribution, from which the
steps are drawn, is not bounded, V and ∂V of a walk consisting
of such steps are not bounded, either. Therefore, not the whole
support, but a reasonably large part is sampled. Especially, it
is large enough to investigate the large-deviation properties of
the distribution. As an example, a part of the distribution for
the volume of a convex hull of RWs in d = 4 dimensions is
shown in Fig. 4.
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FIG. 5. Distributions of the surface (top) and volume (bottom) for d ∈ {3,4} scaled according to Eq. (9). Statistical errors are smaller
than the symbols. The scaling indeed collapses the distributions on one scaling function P̃ . Fits are shown for the largest system size.
The inset shows the peak region in linear scale. For larger values of T the collapse works better. (Only a small fraction of all data points are
visualized.) (a) d = 3, S̃ > 500, br = 1.56, χ 2

red = 2.5, (b) d = 4, S̃ > 200, br = 6.33, χ 2
red = 1.2, (c) d = 3, S̃ > 500, br = 10.61, χ 2

red = 0.8,
and (d) d = 4, S̃ > 2500, br = 26.60, χ 2

red = 1.1.

As we mentioned in the previous section, 〈V 〉 and
〈∂V 〉 scale for large values of T as T deν where de is the
effective dimension of the observable, i.e., de = d for the
volume and de = d − 1 for the surface. A natural question is, if
the whole distribution does scale according to T deν . Reference
[47] already shows that this is true for d = 2. For higher
dimension we arrive analogously at the scaling assumption
for the distribution of the observable S,

P (S) = T −deνP̃ (ST −deν). (9)

Figure 5 shows the distributions of the volume and surface
of the convex hulls of RWs in d ∈ {3,4} dimensions scaled
according to Eq. (9). Apparently the scaling works very well
in the right tail of larger than typical V . The inset shows
that in the peak region there are major corrections to the
assumed scaling for small values of T , but it also shows that
those corrections rapidly get smaller for larger values of T .
A power-law fit with offset to the position of the maxima of
the distributions (no figure) with increasing walk length T ,
confirms convergence for large values of T , i.e., the peaks do
collapse on one universal curve for T → ∞.

In fact, the scaling for the distribution of the span s, which
is the distance between the leftmost and rightmost point, of a

one dimensional Brownian motion is known [1,75] to be

P (s,T ) = (4DT )−νf

(
s

(4DT )ν

)
,

with some diffusion constant D and

f (x) = 8√
π

∞∑
m=1

(−1)m+1m2 e−m2x2
,

which has the following asymptotic behavior [47]:

f (x) = 2π2x−5 e−π/4x2
, for x → 0,

f (x) = 8√
π

e−x2
, for x → ∞.

With this known d = 1 result for the span s, we can construct a
guess for the higher dimensional observables, like the volume.
Since the one-dimensional projection of a high dimensional
RW has the same properties as a one dimensional RW (for
this Gaussian model), we use the naive approach S ∝ sde , e.g.,
V ≈ sd . Substituting this into the known result leads to a guess
for the expected behavior of the tails with

P̃ (S̃) ∝ S̃−(de+4)/de e−blS̃
−2/de

, for S̃ → 0, (10)

P̃ (S̃) ∝ S̃−(de−1)/de e−brS̃
2/de

, for S̃ → ∞, (11)
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FIG. 6. Fit of the exponential Eq. (10) to the left tail. Note, that
the prefactor is constant in this case (for clarity, only every tenths
data point is plotted).

where a rescaled S̃ = ST −νde is introduced for clarity and
with free parameters bl and br. The ds

dS
∝ S−(de−1)/de factors

are introduced by the substitution.
For all values of T , the expected distribution for the left

tail Eq. (10) fits well to the sampled data, shown for the
example of the volume in d = 4 in Fig. 6. We extrapolated the
curve point-wise to T → ∞ assuming a power-law scaling,
resulting in the limit curve in Fig. 6. Similar to the main
region of the distribution (shown in Fig. 5), smaller values of
T show larger deviations from the limit curve. Note that also
the limiting curve fits Eq. (10) (with a suitable values for bl

and the prefactor).
The same analysis for the right tails is shown in Fig. 5,

where Eq. (11) is fitted to the right tail of the distributions
of the volume and surface in d ∈ {3,4}. The good χ2

red values
suggest that this is a good estimate of the asymptotic behavior
indeed.

To determine whether a distribution P satisfies the large
deviation principle [76], i.e., whether it scales as

PT ≈ e−T � (12)

for some large parameter T , we look if the rate function �

does exist in the T → ∞ limit [76]. Comparing Eq. (12) to
the behavior of the right tail [cf. Fig. 5 and Eq. (11)], the rate
function seems to be a power law with an exponent κ = 2/de,
i.e.,

�(S) ∝ Sκ = S2/de . (13)

Since we have numerical results for the distribution P ,
we can determine an empirical rate function � of the
volume/surface S by extrapolation, (cf. Fig. 7) of

�(S/Smax) = − 1

T
ln P (S/Smax) (14)

to the large T limit. While � is usually normalized to � ∈
[0,1], here S and thus � is not bounded. To get a rate function
� comparable to other publications, we assume Smax = T de

like Ref. [47]. For the extrapolation we take values of different
walk lengths T at multiple values of S/Smax, e.g., V/T d in
Fig. 7. These can be thought of as vertical slices through the
plot shown in Fig. 8. We use the measured values of � to
extrapolate it point-wise to T → ∞ using a power law with
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V/T d = 0.0026

FIG. 7. Point-wise extrapolation of the value of the rate function
at a fixed value V/T d to T → ∞ with a power law, here for a d =
4-dimensional volume. The power-law fit seems to be a reasonable
approximation.

offset as shown in Fig. 7. Note that since for different walk
lengths T we used different histogram bins, we obtain the
intermediate values between the discrete bins by cubic spline
interpolation. The extrapolation leads to an asymptotic rate
function estimate. This shows that the rate function exists and
this distributions satisfies the large-deviation principle. This
holds for d = 3 and d = 4, for both volume and surface.

Fitting the power law Eq. (13) through the extrapolated
points, as shown in Fig. 8 for the distribution of the volume
in d = 4, confirms the expectation of κ = 2/de. This holds
also for the other cases we considered (not shown as a figure).
All measured values of κ are tabulated in Table III and are
in reasonable agreement with the expectations. Further, the
good quality of the fit χ2

red and the good agreement of the
exponents with the expectations, suggests that the power law
is a reasonable ansatz and systematic errors due to deviations
from this power law or finite-size effects are minor. Hence the
given statistical errors should be reasonable. Since the same
arguments are applicable for multiple walks, this procedure is

0.001

0.01

0.1

1

10

10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

12825651210242048

V −2/d

Φ

V/T d

Asymptotic Φ
Φ = asκ, κ = 0.497(1)

FIG. 8. Rate function of the distribution of the d = 4-dimensional
volume of the convex hull of RWs for different walk lengths T .
Crosses mark the T → ∞ extrapolated values of the asymptotic rate
function as shown in Fig. 7. To those a power law is fitted yielding
an estimate for the rate function consistent with the guess in Eq. (13).
Further, the expected power law behavior of the left tail is approached.
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TABLE III. Comparison of expected and measured rate function
exponent κ .

Volume V Surface ∂V
d Expected κ Measured κ Expected κ Measured κ

2 1 0.994(4) 2 1.996(2)
3 2/3 0.665(1) 1 0.994(2)
4 1/2 0.497(1) 2/3 0.647(5)

tested for the distributions of m = 3 multiple walkers in d = 3
dimensions, which does also yield within errorbars the same
exponent κ = 0.642(17) as for the single walker (no figure).

Also note that the power-law relation for the left tail
becomes visible, in the far left tail. The expected slope of
the left tail � ∝ s−2/d [cf. Eq. (10)] is visualized in the far left
tail in Fig. 8 and seems to be a reasonable approximation.

IV. CONCLUSIONS

We studied the volume and surface of convex hulls of
RWs in up to d = 6 dimensions for which we confirmed the
analytically known asymptotic means and we estimated the
asymptotic variances.

Further, using sophisticated large-deviation sampling tech-
niques we obtained large parts of the distributions P in up
to d = 4 dimensions down to probability densities far smaller
than P = 10−1000. The distributions collapse over large ranges
of the support (right tail) onto a single curve when being

rescaled with the asymptotic behavior of the means. For the
left tail, we observe a convergence to a limiting function. Even
more, we used our results to confirm the expected functional
shapes of the distributions in the left and the right tails, for
finite and extrapolated values of T , respectively.

We used simple arguments and numerical simulations to
determine the scaling behavior, as well as the asymptotic
behavior also for both tails of the rate function �r (S) ∝ S2/de

for d ∈ {3,4} and are confident that it is valid in arbitrary
dimensions.

For future studies, it would be interesting to investigate the
properties of the convex hulls of other types of random walks,
exhibiting non-trivial values of ν, like self-avoiding walks or
loop-erased RWs.

ACKNOWLEDGMENTS

We thank T. Dewenter and S. Zambare for interesting
discussions and performing some preliminary test simulations.
This work was supported by the German Science Foundation
(DFG) through Grant No. HA 3169/8-1. H.S. and A.K.H.
thank the LPTMS for hospitality and financial support during
one- and two-month visits, respectively, where a considerable
part of the projects were performed. The simulations were
performed at the HPC clusters HERO and CARL, both located
at the University of Oldenburg (Germany) and funded by the
DFG through its Major Research Instrumentation Programme
(INST Grant No. 184/108-1 FUGG and INST Grant No.
184/157-1 FUGG) and the Ministry of Science and Culture
(MWK) of the Lower Saxony State.

[1] B. D. Hughes, Random Walks and Random Environments
(Clarendon Press, Oxford, 1996).

[2] K. Pearson, Nature 72, 294 (1905).
[3] J. W. Strutt, London Edinburgh Dublin Philos. Mag. J. Sci. 37,

321 (1919).
[4] G. Pólya, Math. Ann. 84, 149 (1921).
[5] C. S. Patlak, Bull. Math. Biophys. 15, 311 (1953).
[6] P. M. Kareiva and N. Shigesada, Oecologia 56, 234 (1983).
[7] P. Bovet and S. Benhamou, J. Theor. Biol. 131, 419 (1988).
[8] N. Madras and G. Slade, The Self-avoiding Walk (Springer, New

York, NY, 2013), Chap. Analysis of Monte Carloimethods, pp.
281–364.

[9] G. F. Lawler, Duke Math. J. 47, 655 (1980).
[10] A. Weinrib and S. A. Trugman, Phys. Rev. B 31, 2993 (1985).
[11] M. V. Smoluchowski, Ann. Phys. 353, 1103 (1916).
[12] W. Alt, J. Math. Biol. 9, 147 (1980).
[13] P. J. van Haastert and M. Postma, Biophys. J. 93, 1787 (2007).
[14] B. Weesakul, Ann. Math. Stat. 32, 765 (1961).
[15] M. Kac, Am. Math. Mon. 54, 369 (1947).
[16] M. E. Fisher, J. Stat. Phys. 34, 667 (1984).
[17] G. Schehr, S. N. Majumdar, A. Comtet, and J. Randon-Furling,

Phys. Rev. Lett. 101, 150601 (2008).
[18] T. A. Witten and L. M. Sander, Phys. Rev. B 27, 5686 (1983).
[19] D. W. Schaefer, Science 180, 1293 (1973).
[20] E. A. Codling, M. J. Plank, and S. Benhamou, J. R. Soc.,

Interface 5, 813 (2008).
[21] E. F. Fama, Financ. Anal. J. 21, 55 (1965).

[22] M. Rosvall and C. T. Bergstrom, Proc. Natl. Acad. Sci. USA
105, 1118 (2008).

[23] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh,
in Proceedings of the 22nd International Conference on World
Wide Web, WWW ’13 (ACM, New York, NY, 2013), pp. 505–
514.

[24] E. Dumonteil, S. N. Majumdar, A. Rosso, and A. Zoia, Proc.
Natl. Acad. Sci. USA 110, 4239 (2013).

[25] W. Kuhn, Kolloid-Zeitschrift 68, 2 (1934).
[26] E. Helfand, J. Chem. Phys. 62, 999 (1975).
[27] C. Haber, S. A. Ruiz, and D. Wirtz, Proc. Natl. Acad. Sci. USA

97, 10792 (2000).
[28] F. Bartumeus, M. G. E. da Luz, G. M. Viswanathan, and J.

Catalan, Ecology 86, 3078 (2005).
[29] L. Börger, B. D. Dalziel, and J. M. Fryxell, Ecol. Lett. 11, 637

(2008).
[30] B. J. Worton, Biometrics 51, 1206 (1995).
[31] L. Giuggioli, J. R. Potts, and S. Harris, PLoS Comput. Biol. 7,

e1002008 (2011).
[32] Y. Lanoiselée and D. S. Grebenkov, Phys. Rev. E 96, 022144

(2017).
[33] L. T. Gérard Letac, Am. Math. Mon. 87, 142 (1980).
[34] G. Letac, J. Theoret. Probabil. 6, 385 (1993).
[35] J. Randon-Furling, S. N. Majumdar, and A. Comtet, Phys. Rev.

Lett. 103, 140602 (2009).
[36] S. N. Majumdar, A. Comtet, and J. Randon-Furling, J. Stat.

Phys. 138, 955 (2010).

062101-8



CONVEX HULLS OF RANDOM WALKS IN HIGHER . . . PHYSICAL REVIEW E 96, 062101 (2017)

[37] M. Chupeau, O. Bénichou, and S. N. Majumdar, Phys. Rev. E
91, 050104 (2015).

[38] R. Eldan, Electron. J. Probab. 19, 1 (2014).
[39] Z. Kabluchko and D. Zaporozhets, Trans. Amer. Math. Soc. 368,

8873 (2016).
[40] V. Vysotsky and D. Zaporozhets, arXiv:1506.07827 (2015).
[41] D. S. Grebenkov, Y. Lanoiselée, and S. N. Majumdar, J. Stat.

Mech. (2017) 103203.
[42] J. Kampf, G. Last, and I. Molchanov, Proc. Am. Math. Soc. 140,

2527 (2012).
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A global picture of a random particle movement is given by the convex hull of the visited points. We obtained
numerically the probability distributions of the volume and surface of the convex hulls of a selection of three types
of self-avoiding random walks, namely, the classical self-avoiding walk, the smart-kinetic self-avoiding walk,
and the loop-erased random walk. To obtain a comprehensive description of the measured random quantities,
we applied sophisticated large-deviation techniques, which allowed us to obtain the distributions over a large
range of support down to probabilities far smaller than P = 10−100. We give an approximate closed form of the
so-called large-deviation rate function � which generalizes above the upper critical dimension to the previously
studied case of the standard random walk. Further, we show correlations between the two observables also in the
limits of atypical large or small values.

DOI: 10.1103/PhysRevE.97.062159

I. INTRODUCTION

The standard random walk is a simple Markovian process
which has a history as a model for diffusion. There are many
exact results known [1]. If memory is added to the model,
e.g., to interact with the past trajectory of the walk, analytic
treatment becomes much harder. A class of self-interacting
random walks that we will focus on in this study are self-
avoiding random walks, which live on a lattice and do not visit
any site twice. This can be used to model systems with excluded
volume, e.g., polymers whose single monomers cannot occupy
the same site at once [2]. There are more applications which are
not as obvious, e.g., a slight modification of the smart-kinetic
self-avoiding walk traces the perimeter of critical percolation
clusters [3], while the loop-erased random walk can be used
to study spanning trees [4] (and vice versa [5]).

One of the central properties of random walk models is the
exponent ν, which characterizes the growth of the end-to-end
distance r with the number of steps T , i.e., r ∝ T ν . While this
has the value ν = 1/2 for the standard random walk, its value
is larger for the self-avoiding variations, which are effectively
pushed away from their past trajectory. In two dimensions,
this value (and other properties) can often be obtained by the
correspondence to Schramm-Loewner evolution [6–9]. But
between two dimensions and the upper critical dimension,
above which the behavior is the same as the standard random
walk, Monte Carlo simulations are used to obtain estimates for
the exponent ν.

*hendrik.schawe@uni-oldenburg.de
†a.hartmann@uni-oldenburg.de
‡satya.majumdar@u-psud.fr

Here we want to study the convex hulls of a selection of
self-avoiding walk models featuring larger values of ν. The
convex hull allows one to obtain a global picture of the space
occupied by a walk without exposing all details of the walk. As
an example, convex hulls are used to describe the home ranges
of animals [10–12] or the spatial extent of animal epidemics
[13]. In physics, they have been proposed to be applied for
the analysis of surface diffusion or the detection of binding
of molecules [14]. Here, more fundamentally, we will look at
the smart-kinetic self-avoiding walk (SKSAW), the classical
self-avoiding walk (SAW), and the loop-erased random walk
(LERW), since they span a large range of ν values and are well
established in the literature. About the convex hulls of standard
random walks, we already know plenty of properties. The mean
perimeter and area have been known exactly for over 20 years
[15,16] for large walk lengths T , i.e., the Brownian motion
limit. Since then simpler and more general methods were
devised based on Cauchy’s formula which relates the support
function of a curve to the perimeter and the area enclosed by
the curve [17,18]. More recently, also the mean hypervolume
and surface for arbitrary dimensions was calculated [19]. For
discrete-time random walks with jumps from an arbitrary
distribution, the perimeters of the convex hull for finite (but
large) walk lengths T were computed explicitly [20]. For the
case of Gaussian jump lengths, even an exact combinatorial
formula for the volume in arbitrary dimensions is known [21].
For the variance there is an exact result for Brownian bridges
[22]. Concerning the full distributions, no exact analytical
results are available. Here sophisticated large-deviation sim-
ulations were used to numerically explore a large part of the
full distribution, i.e., down to probabilities far smaller than
10−100 [23–25]. Numerical studies of this kind, which are
able to obtain the distribution over a wide range including
the extreme tails, are useful to check predictions about, e.g.,

2470-0045/2018/97(6)/062159(9) 062159-1 ©2018 American Physical Society
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large-deviation rate functions such as discussed in Ref. [26].
Furthermore, they can explore new territory and stimulate other
studies of large-deviation properties. For example Ref. [23]
shows numerical results that the distribution of area and
perimeter of the convex hulls of planar standard random walks
obey the large-deviation principle, which was later proven
by Ref. [27].

Despite this increasing interest in the convex hulls of
standard random walks, there seem to be no studies treating the
convex hulls of self-avoiding walks. To fill this void, we use
Markov chain Monte Carlo sampling to obtain the distributions
of some quantities of interest over their whole support. To
connect to previous studies [23–25] we also compare the
aforementioned variants to the standard random walk on a
square lattice (LRW). We are mainly interested in the full
distribution of the area A and the perimeter L of d = 2
dimensional hulls for walks in the plane, since the effects of
the self-interactions are stronger in lower dimensions, but we
will also look into the volume V in the d = 3 dimensional
case. In the past study on standard random walks [25] we
found that the full distribution can be scaled to a universal
distribution using only the exponent ν and the dimension for
large walk lengths T . For the present case, where a walk might
depend on its full history, one could expect a more complex
behavior. Nevertheless, our results presented below show con-
vincingly that also for self-interacting walks the distributions
are universal and governed mainly by the exponent ν, except
for some finite-size effects, which are probably caused by the
lattice structure. Furthermore, we use the distributions to obtain
empirical large-deviation rate functions [28], which suggests
that a limiting rate function is mathematically well defined. We
also give an estimate for the rate function, which is compatible
with the known case of standard random walks and with all
cases under scrutiny in this study.

II. MODELS AND METHODS

This section gives a short overview over the models and
methods used, with references to literature more specialized
on the corresponding subject. Where we deem adequate, also
technical details applicable for this study are mentioned.

A. Sampling scheme

To generate the whole distribution of the area or perimeter
of the convex hull of a random walk over its full support, a
sophisticated Markov chain Monte Carlo (MCMC) sampling
scheme is applied [29,30]. The Markov chain is here a sequence
of different walk configurations. The fundamental idea is to
treat the observable S, i.e., the perimeter, area, or volume, as
the energy of a physical system which is coupled to a heat bath
with adjustable “temperature” � and to sample its equilibrium
distribution using the Markov chain. This can be easily done
using the classical Metropolis algorithm [31]. Therefore the
current walk configuration is changed a bit. (The precise type
of change is dependent on the type of walk we are looking at
and is explained in the following sections.) The changes must
be designed in a way that any configuration can be reached
from any other configuration in finite time, i.e., ergodicity
must be given. The change is accepted with the acceptance

Θ = −10

Θ = −2

Θ =
 ±
∞

Θ = 2

FIG. 1. Typical SAW configurations with T = 200 steps and their
convex hulls at different temperatures �. � = ±∞ corresponds to a
typical configuration without bias.

probability

pacc = min{1, e−�S/�} (1)

and rejected otherwise, which fulfills detailed balance. This
means, at long times the Markov process yields con-
figurations C from its equilibrium distribution Q�(C) =

1
Z(�)Q(C) e−S(C)/�, with the partition function Z(�). For the
distribution of the observable P (S) this means

P�(S) =
∑

{C|S(C)=S}
Q�(C) (2)

=
∑

{C|S(C)=S}

exp(−S/�)

Z(�)
Q(C) (3)

= exp(−S/�)

Z(�)
P (S). (4)

That means the “temperature” � will bias the configuration
towards specific ranges of the “energy” S. Configurations at
small and negative � will show larger than typical S; small
and positive � show smaller than typical S and large values
independent of the sign sample configurations from the peak
of the distribution. Figure 1 shows typical walk configurations
of the self-avoiding walk at different values of �.

In a second step, histograms of the equilibrium distribution
P�(S) are corrected for the bias introduced via �. Using
Eq. (4), we can easily remove this bias and arrive at the
unbiased distribution

P (S) = eS/� Z(�)P�(S). (5)

The free parameter Z(�) can be obtained by enforcing continu-
ity and normalization of the distribution. This necessitates that
we perform this sampling at multiple � such that there are good
statistics over the whole range and overlapping histograms
from which to choose Z(�), so that the overlapping regions
coincide, i.e., the distribution is continuous. This, at the same
time, serves as a quality estimate of the Markov process,
since the overlaps will only coincide cleanly over their whole
range if the samples were taken in equilibrium. So a clean
coincidence is a strong hint at a good quality of the data.
Further details and examples can be found in several other
articles, where it has been applied and explained for specific
models [26,29,30,32–35], but also in a very general form [36].

062159-2



LARGE DEVIATIONS OF CONVEX HULLS OF SELF- … PHYSICAL REVIEW E 97, 062159 (2018)

In particular, the algorithm was already used successfully in
other studies looking at the large deviation properties of convex
hulls of random walks [23,24].

B. Lattice random walk

All of the self-interacting random walks, which are the focus
of this study, are typically treated on a lattice. Hence, we will
start by introducing the simple, i.e., noninteracting, isotropic
random walk on a lattice. For simplicity we will use a square
lattice with a lattice constant of 1. A realization consists of T

randomly chosen discrete steps δi . Here we use steps between
adjacent lattice sites, i.e., d-dimensional Cartesian base vectors
ei , which are drawn uniformly from {±ei}. The realization can
be defined as the tuple of the steps (δ1,...,δT ) and the position
at time τ as

x(τ ) = x0 +
τ∑

i=1

δi . (6)

Here we set the start point x0 at the coordinate origin. The set
of visited sites is therefore P = {x(0), . . . ,x(T )}.

The central quantity of the LRW is the average end-to-end
distance

r =
√

〈(x(T ) − x0)2〉 , (7)

where 〈. . .〉 denotes the average over the disorder. It grows
polynomially and is characterized by the exponent ν via r ∝
T ν . For the LRW it is ν = 1/2, which is typical for all diffusive
processes.

As the change move for the Metropolis algorithm, we
replace a randomly chosen δi by a new randomly drawn
displacement. This way we can clearly reach any possible
configurations, i.e., ergodicity holds. Since our quantity of
interest is the convex hull, i.e., a global property of the walk, we
do not profit much from local moves, e.g., crankshaft moves.
Thus we use this simple, global move.

C. Smart-kinetic self-avoiding walk

The smart-kinetic self-avoiding walk [3,37] is probably the
most naive approach to a self-avoiding walk. It grows on a
lattice and never enters sites it already visited. Since it is
possible to get trapped on an island inside already-visited sites,
this walk needs to be smart enough to never enter such traps.

In d = 2 it is possible to avoid traps using just local
information in constant time using the winding angle method
[37]. In conjunction with hash table backed detection of
occupied sites, a realization with T steps can be constructed in
time O(T ).

This method will typically yield longer stretched walks than
the LRW due to the constraint that it needs to be self-avoiding.
This can be characterized by the exponent ν, which is larger
than 1/2 in d = 2.

The sketch of Fig. 2 shows that this ensemble does not
contain every configuration with the same probability but
prefers closely winded configurations. This is also visible in
Fig. 3(b). This is characterized by the exponent ν = 4/7 [9],
which is larger than ν for the LRW but smaller than for the
SAW. Also note that it is conjectured that the upper critical
dimension is d = 3 [37], i.e., ν = 1/2 for all d � 3—possibly
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FIG. 2. Decision tree visualizing the probability to arrive at
certain configurations following the construction rules of the SKSAW.
Not all possible configuration have the same probability, and hence
this rule defines a different ensemble than SAW.

with logarithmic corrections in d = 3. Therefore only d = 2
is simulated in this study.

While it is easy to draw realizations from this ensemble
uniformly, i.e., simple sampling, it is not so straightforward
to apply the MCMC changes. If one just changes single steps
like for the LRW and accepts if it is self-avoiding or rejects if it
is not, one will generate all self-avoiding walk configurations
with equal probability. Our approach to generate realizations
according to this ensemble handles the construction of the
walk as a black box. It acts on the random numbers used
to generate a realization from scratch. During the MCMC
at each iteration one random number is replaced by a new
random number and a SKSAW realization is regenerated from
scratch using the modified random numbers [36]. Since every
configuration of underlying random numbers can occur this
way, every possible SKSAW configuration can be constructed,
such that this protocol is ergodic. This change is then accepted
according to Eq. (1) and undone otherwise.

FIG. 3. Typical configurations with T = 200 steps, drawn uni-
formly from the corresponding ensembles, of all types of random
walks under scrutiny in this study with their convex hulls.
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D. Self-avoiding random walk

While the above-mentioned SKSAW does produce self-
avoiding walks, SAW denotes another ensemble, the ensemble
where realizations are drawn uniformly from the set of all
self-avoiding configurations. It is not trivial to sample from
this distribution efficiently. The black-box method used for
SKSAW is not feasible, since the construction of a SAW
takes time exponential in the length with simple methods
like dimerization [2,38]. It is possible to perform changes
directly on the walk configuration and accept them according
to Eq. (1), but their rejection rate is typically quite high and
the resulting configurations are very similar [2], which makes
this inefficient. The state-of-the-art method to sample SAW
is the pivot algorithm [2]. It chooses a random point and
uses it as the pivot for a random symmetry operation, i.e.,
rotation or mirroring. If the resulting configuration is not
self-avoiding, it is rejected. Otherwise we accept it with the
temperature-dependent acceptance probability Eq. (1).

As mentioned previously, the exponent ν = 3/4 [7] is larger
than for the SKSAW. Since the upper critical dimension for
SAW is d = 4, this study will also look at d = 3, where an
exact value of ν is not known and the best estimate is ν =
0.587 597(7) [39], though our focus is on d = 2 for this type.

While there are highly efficient implementations of the pivot
algorithm [39,40], the time complexity of the problem at hand
is dominated by the time needed to construct the convex hull;
thus we go with the simple hash-table-based O(T ) approach
[2].

E. Loop-erased random walk

The LERW [41] uses a different approach to achieve the
self-avoiding property. It is built as a simple LRW, but each
time a site is entered for the second time, the loop that is formed,
i.e., all steps since the first entering of this site, is erased. While
this ensures no crossings in the walk, the resulting ensemble
is different from the SAW ensemble and the walks are longer
stretched out, as characterized by the larger exponent ν = 4/5
[5,8,42]. Similar to the SAW, the upper critical dimension is
d = 4 and an estimate for d = 3 is ν = 0.615 76(2) [43].

For construction—similar to SKSAW—we need to keep
all used random numbers and change them in the MCMC
algorithm. This leads to a dramatically higher memory con-
sumption than simple sampling, where each loop can be
discarded as soon as it is closed.

F. Convex hulls

We will study the convex hulls C of the sites visited by the
random walk P . The convex hull of a point set P is the smallest
polytope containing all points Pi ∈ P and all line segments
(Pi,Pj ). Some example hulls are shown in Fig. 3.

Convex hulls are one of the most basic concepts
in computational geometry,1 with noteworthy application

1Three of the first four examples for static problems of
computational geometry in Wikipedia can utilize convex hulls for their
solution (https://en.wikipedia.org/wiki/Computational_geometry,
12.01.2018).

in the construction of Voronoi diagrams and Delaunay
triangulations [44].

For point sets in the d = 2 plane, we use Andrew’s mono-
tone chain [45] algorithm for its simplicity and Quickhull [46]
as implemented by QHULL [47] ford = 3. Both algorithms have
a time complexity of O(T ln T ). In d = 2 Andrew’s monotone
chain algorithm results in ordered points of the convex hull.
Adjacent points (i,j ) in this ordering are the line segments of
the convex hull. Quickhull results in the simplicial facets of
the convex hull.

To obtain the perimeter of a d = 2 convex hull, we sum
the lengths of its line segments Lij . To calculate the area and
the volume, we use the same fundamental idea. In both cases
we subdivide the area/volume into simplexes, i.e., triangles
for the area and tetrahedra for the volume. Therefore we
choose an arbitrary fixed point p0 inside of the convex hull
and construct a simplex for each facet fm, i.e., for d = 2 each
line segment of the hull fm = (i,j ) forms a triangle (i,j,p0),
and each triangular face fm = (i,j,k) of a d = 3 dimensional
polyhedron forms a tetrahedron with p0. The volume of a
triangle is trivially

Aijp0 = 1
2 dist(fm,p0)Lij ,

where dist(fm,p0) is the perpendicular distance from a facet
fm to a point p0. Since the union of all triangles built this way
is the whole polygon, the sum of their areas is the area of the
polygon. Similarly, the volume of a polyhedron is the sum of
the volumes of all tetrahedra constructed from its faces. The
volume of the individual tetrahedra is given by

Vijkp0 = 1
3 dist(fm,p0)Aijk.

For random walks on a lattice with T steps of length 1 in d

dimensions the maximum volume is

Smax = (T/de)de

de!
(8)

for T divisible by the effective dimension de of the observable,
e.g., 2 for the area of a planar hull or 3 for the volume in three
dimensions. For example, the configuration of maximum area
corresponds to an L shape, i.e., Amax = T 2

8 . This form can be
derived by the general volume of a d-dimensional simplex
defined by its d + 1 vertices vi [48]:

V = 1

d!
det (v1 − v0, . . . ,vd − v0). (9)

Without loss of generality, we set v0 to be the coordinate
origin. To achieve maximum volume all vi ,i > 0 need to be
orthogonal and of equal length. Thus a random walk going T/d

steps along some base vector ei and continuing with T/d steps
in direction ei+1 has a convex hull defined by the tetrahedron
specified by vi = ∑i

j=1
T
d

ej . The matrix M = (v1, . . . ,vd ) is
thus triangular and its determinant is the product of its diagonal
entries Mii = T

d
, which leads directly to Eq. (8). An exception

occurs in d = 2, where the perimeter is Lmax = 2T .

III. RESULTS

The focus of this work lies on d = 2 dimensional SAW and
LERW. The results for higher dimensions and for SKSAW are
generated with less numerical accuracy. The LRW results also
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have a lower accuracy, as their purpose is mainly to scrutinize
the effect of the lattice structure underlying all considered walk
types in comparison to the nonlattice results from [25]. Also,
not all combinations are simulated but only those listed with a
value in Table II.

The same raw data is evaluated for equidistant bins and log-
arithmic bins. And the respective variants are shown according
to the scaling of the x axis.

A. Correlations

To get an intuition for how the configurations with atypical
large areas A or perimeters L look like, we visualize the
correlation between these two observables as scatter plots in
Fig. 4.

Since the smallest possible SAW is an (almost) fully filled
square, there cannot be instances below some threshold, which
explains the gaps on the left side of the scatter plots and of
the distributions shown in the following section. In the center
of the scatter plots, which is already in probability regions
far beyond the capabilities of simple sampling methods, the
behavior becomes strongly dependent on the bias.

If biasing for large perimeters (top), the area shows a
nonmonotonous behavior. First, somehow larger perimeters
come along typically with larger areas for entropic reasons,
i.e., there are fewer configurations which are long and thin, and
more bulky, which have a larger area. Though, for the far-right
tail, the only configurations with extreme large perimeters are
almost linelike and thus have a very small area. Also note that
the excluded volume effect of the SAW leads to overall larger
areas at the same perimeters.

On the other hand, when biasing for large areas (bottom)
the configurations with largest area, which are L-shaped
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FIG. 4. The top row shows data from simulations biasing towards
larger (and smaller) than typical perimeters L. The bottom row biases
the area A. The left column shows data from LRW and the right
from SAW both with T = 512 steps. The results of simple sampling
are shown in black. Note that only very narrow parts are covered by
simple sampling for the LRW.

(cf. Fig. 1), unavoidably have quite large perimeters; hence
the scatter plots show an almost linear correlation between area
and perimeter. Since the configurations of large areas naturally
avoid self-intersections, since steps on already visited points do
not enlarge the convex hull, the differences between LRW and
SAW diminish in the right tail. Note that with the large-area
bias, no walks with the very extreme perimeters exist, for the
reason already mentioned.

Note, however, that these scatter plots are very dependent on
which observable we are biasing for. In principle we observe
that small perimeters are strongly correlated with small areas,
while for large but not too large perimeters, there is a broad
range of area sizes possible. For extremely large perimeters,
the area must be small. For a comprehensive analysis, one
would need a full two-dimensional histogram, which could be
obtained using Wang-Landau sampling but which is beyond the
scope of this study and would require a much larger numerical
effort. Nevertheless, from looking at Fig. 4 one can anticipate
that the two-dimensional histogram would exhibit a strong
correlation for small values of L and a broad scatter of the
accessible values of A for larger but not too large values of L.

B. Moments and distributions

The distributions of the different walk types differ consid-
erably. This can be observed in Fig. 5, where distributions of
the area A for all types with T = 1024 steps are drawn. The
main part of the distribution shifts to larger values for larger
values of ν as expected, and the probability of atypically large
areas is boosted even more in the tails.

In the right tail, the distributions seem to bend down. Below,
where we show results for different walk sizes T , we see
that this is a finite-size effect of the lattice structure and the
fixed step length. This can be seen also as follows: Since
the lattice together with the fixed step length sets an upper
bound on the area, the probability plummets near this bound
for entropic reasons, i.e., there are for any walk length T only
eight configurations with maximum area (due to symmetries)
such that all self-avoiding types will meet at this point (not
visible because the bins are not fine enough).
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FIG. 5. Distribution of all scrutinized walk types with T = 1024
steps. The vertical line at Amax = 131 072 denotes the maximum area
[Eq. (8)], i.e., SAW and LERW are sampled across their full support
and SKSAW and LRW are not. The inset shows the peak region.
The gap on the left is due to excluded volume effects, i.e., there are
no configurations with area below some threshold, since this would
require self-intersection.
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This is supported from Ref. [23], which shows that the
distribution P (A) for standard random walks with Gaussian
jumps, i.e., without lattice or fixed step length, do not bend
down and have an exponential right tail. We conclude that the
deviations from this are thus caused by this difference.

First we will look at the rescaled means μS = 〈S〉/T deν ,
where S is an observable and de its effective dimension, as
introduced above in Eq. (8). The scaling is a combination of
the scaling of the end-to-end distance r ∝ T ν and the typical
scaling that a d-dimensional observable scales as rd with a
characteristic length r .

Nevertheless, due to finite-size corrections, the ratios μS =
〈S〉/T deν will still depend on the walk length. Thus, the
measured estimates μS = μS(T ) at specific walk lengths T

need to be extrapolated to get an estimate of the asymptotic
value μ∞

S = limT →∞ μS(T ). For the extrapolation we use [25]

μS(T ) = μ∞
S + C1T

−1/2 + C2T
−1 + o(T −1). (10)

This choice is motivated by a large-T expansion for the area
A (de = 2) of the convex hulls of standard random walks (ν =
1/2) with Gaussian jumps [20],

〈A〉
T

= π

2
+ γ

√
8π T −1/2 + π (1/4 + γ 2) T −1 + o(T −1),

(11)

where the constant γ = ζ (1/2)/
√

2π = −0.582 59 . . . . A nat-
ural guess for a generalization to observables of a different
effective dimension de [25] and different walk types would be
a similar behavior with different coefficients like Eq. (10).

Indeed, using this form to estimate the asymptotic means
μ∞

S of the observable S yields good fits, as visible in Fig. 6.
In fact, for the fit quality we obtain χ2

red values between 0.4
and 1.7. (The fit ranges for SKSAW begin at T = 512, and for
LRW, SAW, and LERW at T = 128, hinting at more severe
corrections to scaling for the former.) We assume that the
scaling is thus valid for arbitrary random walk types. The
resulting fit parameters are shown in Table I.

For standard random walks with Gaussian jumps the asymp-
totic means μ∞

S,Gaussian are known [19]. These results can
be used to predict the corresponding values for LRW. First
consider the following heuristic argument for a d = 2 square
lattice. On average a random walk takes the same amount
of steps in x and y direction such that on average two steps
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FIG. 6. Scaled means μA = 〈A〉/T 2ν and μL = 〈L〉/T ν for dif-
ferent walk types. The lines are fits to extrapolate the asymptotic
values shown in Table I according to Eq. (10). Error bars of the values
are smaller than the line of the fit and are not shown for clarity.

TABLE I. Asymptotic mean values extrapolated from simula-
tional data and the exactly known values for the standard random
walk (LRW). The columns labeled with μ∞

L and μ∞
A are for d = 2,

those labeled with μ∞
∂V and μ∞

V are for d = 3. For d = 3 we did not
simulate the SKSAW, see Sec. II C. Also, SAW has lower accuracy
because of fewer samples in d = 3.

μ∞
L μ∞

A μ∞
∂V μ∞

V

LRW (exact) 3.5449... 0.7854... 2.0944... 0.21440...
LRW 3.5441(7) 0.7852(2) 2.0945(4) 0.21445(4)
SKSAW 4.5355(12) 1.2642(5)
SAW 0.8233(7) 0.7714(1) 2.070(2) 0.1998(2)
LERW 2.1060(3) 0.2300(1) 1.6436(2) 0.13908(3)

displace the walker by
√

2, i.e., the diagonal of a square. In
contrast, a Gaussian walker with variance 1 will be displaced
on average by 1 every step. To make both types comparable,
we can increase the lattice constant to

√
2, which leads to an

average displacement of 1 per step for the LRW. Using the same
argumentation for higher dimensions, we can use the trivial
scaling with the lattice constant Sde and the length of the diag-
onal of a unit hypercube d1/2 to derive a general conversion:

μ∞
S,LRW = μ∞

S,Gaussian/d
de/2. (12)

These known results are listed next to our measurements
in Table I and are within error bars compatible with our
measurements.

Since we have data for whole distributions, a natural
question is whether this scaling does apply over the whole
support of the distribution. There is evidence that this is
true for the convex hulls of standard random walks [23] in
arbitrary dimensions [25]. That means the distributions of an
observable S for different walk lengths T should collapse onto
one universal function

P (S) = T −deνP̃ (ST −deν). (13)

Figure 7 shows the distributions of the d = 2 area of all
considered random walk types scaled according to Eq. (13).
The curves collapse well in the peak region and in the
intermediate-right tail. In the far-right tail, clear deviations
from a universal curve are obvious, which are the mentioned
finite-size effects caused by the lattice.

The distributions look qualitatively similar, though with
weaker finite-size effects, i.e., a better collapse, for the perime-
ter L (not shown). In d = 3, where we have studied the volume,
the results also look similar but exhibit stronger finite-size
effects (not shown).

Using the full distributions at different values of the walk
length PT , we can test if it obeys the large-deviation principle,
i.e., if � exists, such that the distribution scales as

PT ≈ e−T � (14)

for large values of T [28]. To simplify comparison, the support
of the rate function is usually normalized to [0,1]. Here we
achieve this by using the maximum Eq. (8). Solving Eq. (14)
for � results in

�(S/Smax) = − 1

T
ln P (S/Smax). (15)
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FIG. 7. Distributions of the area of different types of random walks scaled according to Eq. (13) for different walk lengths T .

We plot this for a selection of our results in Fig. 8. From
these plots, � seems to approximately follow a power law in
the intermediate-right tail, while the finite-size effects caused
by the lattice play a major role in the far-right tail, which
consequently “bends up.”

Assuming that the rate function behaves approximately as
a power law, which seems consistent with our data shown in
Fig. 8, i.e.,

�(s) ∝ sκ , (16)

the exponent κ can be estimated by combining the definition
of � Eq. (14) with the scaling assumption Eq. (13) as follows;
note that for clarity we use here Smax ∝ T de :

exp(−T �(S/T de )) ≈ 1

T νde
P̃ (S/T νde ). (17)

The 1/T νde term on the right-hand side can be ignored next
to the exponential. Since the right-hand side is a function of
S/T νde , the left-hand side must also be dependent only on
S/T νde . This can be achieved by assuming −νdeκ + deκ = 1,
as one can easily see by using Eq. (16):

Starting from the left-hand side

exp(−T 1�(S/T de ))

∝ exp(−T 1(S/T de )κ )

= exp(−T −νdeκ+deκ (S/T de )κ )

= exp(−(S/T νde )κ ).

From this we can conclude

κ = 1

de(1 − ν)
, (18)

which simplifies to the case of the standard random walk above
the critical dimension of the given walk type [25],

κg = 2

de
.

To compare this crude estimate with the results of our
simulations, we do a pointwise extrapolation of the empirical
rate functions for fixed walk lengths T as done before in
Refs. [23–25]. For the pointwise extrapolation, we use mea-
surements �T for multiple values of the walk length T at fixed
values of S/Smax. Since our data are discrete due to binning,
the values of �T are obtained by cubic spline interpolation.
With these data points, which can be thought of as vertical
slices through the plots of Fig. 8, we extrapolate the T → ∞
case with a fit to a power law with offset

� = aT b + �∞. (19)

The extrapolated values are marked with black dots in Fig. 8.
Since finite-size effects have a major impact on the tails due to
the lattice structure, we expect that our estimate is only valid for
the intermediate right tail of our simulational data. To estimate
sensible uncertainties, we fit different ranges of our data and
give the center of the range of the obtained κ as our estimate
with an error including the extremes of the obtained κ . The
black lines in Fig. 8 are our expected values, which are in all
examples compatible with some range of our extrapolated data.
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FIG. 8. Selection of asymptotic rate functions extrapolated from our data and our expected exponent κ of the rate function �.

All exponents κ we calculated, together with our expecta-
tions, are listed in Table II. A more detailed discussion of the
examples shown in Fig. 8 follows.

In Fig. 8(a) the LRW is shown, which is equivalent to
Brownian motion in the large-T limit for which Refs. [23]
and [25] showed the rate function to behave like a power
law with exponent κ = 1 for the area in d = 2. Using the
above-mentioned procedure we obtain κ = 0.99(2), which is
in perfect agreement with the expectation κ = 1.

Figure 8(b) shows the same for the SKSAW. The obtained
asymptotic rate function’s exponent κ = 1.28(12) is compati-
ble with our expectation, though the stronger finite-size effects
lead to larger uncertainties of our estimate.

Figure 8(c) shows the same but for the volume of the SAW
in d = 3 dimensions. The finite-size effects are apparently

TABLE II. Comparison of expected and measured rate function
exponent κ . The value is the center of multiple fit ranges and the error
is chosen such that the largest and the smallest result is enclosed.

V ∂V

Eq. (18) κ Eq. (18) κ

LRW 1 0.99(2) 2
SKSAW 7

6 1.28(12) 7
3

SAW 2 2.2(4) 4 4.11(14)
SAW d = 3 0.809... 0.92(11) 1.214...

LERW 5
2 2.57(24) 5 4.82(19)

LERW d = 3 0.867... 0.89(9) 1.299...

stronger for the volume in d = 3, as the slope of the right-tail
rate function gets less steep with increasing system size.

Figure 8(d) shows the same for the perimeter of a d = 2
dimensional LERW. In contrast to the area and volume, the
far-right tail of the perimeter seems to bend down instead of
up, albeit slightly. Though in the intermediate right tail, the
rate function seems to behave as expected.

In general, our data supports the convergence to a lim-
iting rate function, which, mathematically speaking, means
that the large-deviation principle holds. This means that
the distributions are somehow well behaved and might be
accessible to analytical calculations, alhough the estimate for
what the rate function � actually is can possibly be improved.
However, since our estimate for κ is always compatible with
our measurements it appears plausible that also for interacting
walks the distribution of the convex hulls is governed by the
scaling behavior of the end-to-end distance, as given by the
exponents ν.

IV. CONCLUSIONS

We numerically studied the area and perimeter of the convex
hulls of different types of self-avoiding random walks in the
plane and to a lesser degree the volume of their convex hulls
in d = 3 dimensional space. By applying sophisticated large-
deviation algorithms, we calculated the full distributions, down
to extremely small probabilities like 10−400. We also obtained
corresponding rate functions of these observables. Our data
support a convergence of the rate functions, which means
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the large-deviation principle seems to hold. We observed a
generalized scaling behavior, which was before established
for standard random walks. Thus, although the self-avoiding
types of walk exhibit a more complicated behavior as compared
to standard random lattice walks, and although the limiting
scaled distributions of their convex hull’s volume and surface
look quite different for the various walk cases, in the end the
convex hull behavior seems to be still governed by the single
end-to-end distance scaling exponent ν.

We also observed, rather expectedly, that the two ob-
servables area and perimeter are highly correlated for small
values. For large but not too large values of the perime-
ter, many different values of the area are possible but are
statistically dominated by rather small values of the area.
Extremely large values of the perimeter are only feasible with
shrinking area.

Finally, we gave estimates for the large-T asymptotic mean
values of the mentioned observables. These might be of interest
for attempts to calculate these values analytically.

For future studies it could be interesting to look closer into
the correlations between different observables that we briefly
noted. For a more thorough study, it would be useful to obtain
full two-dimensional histograms.

ACKNOWLEDGMENTS

This work was supported by the German Science Founda-
tion (DFG) through Grant No. HA 3169/8-1. H.S. and A.K.H.
thank the LPTMS for hospitality and financial support during
one- and two-month visits where a considerable parts of the
projects were performed. The simulations were performed
at the HPC clusters HERO and CARL, both located at the
University of Oldenburg (Germany) and funded by the DFG
through its Major Research Instrumentation Programme (INST
184/108-1 FUGG and INST 184/157-1 FUGG) and the Min-
istry of Science and Culture (MWK) of the Lower Saxony
State. We also thank the GWDG Göttingen for providing
computational resources.

[1] B. D. Hughes, Random Walks and Random Environments
(Clarendon Press, Oxford, UK, 1996).

[2] N. Madras and G. Slade, Analysis of Monte Carlo methods, in
The Self-Avoiding Walk (Springer, New York, 2013), pp. 281–
364.

[3] A. Weinrib and S. A. Trugman, Phys. Rev. B 31, 2993 (1985).
[4] S. S. Manna, D. Dhar, and S. N. Majumdar, Phys. Rev. A 46,

R4471 (1992).
[5] S. N. Majumdar, Phys. Rev. Lett. 68, 2329 (1992).
[6] J. Cardy, Ann. Phys. 318, 81 (2005).
[7] G. F. Lawler, O. Schramm, and W. Werner, arXiv:math/0204277.
[8] G. F. Lawler, O. Schramm, and W. Werner, Conformal invariance

of planar loop-erased random walks and uniform spanning trees,
in Selected Works of Oded Schramm, edited by I. Benjamini and
O. Häggström (Springer, New York, 2011), pp. 931–987.

[9] T. Kennedy, J. Stat. Phys. 160, 302 (2015).
[10] C. O. Mohr, American Midland Naturalist 37, 223 (1947).
[11] B. J. Worton, Ecol. Model. 38, 277 (1987).
[12] S. A. Boyle, W. C. Lourenco, L. R. da Silva, and A. T. Smith,

Folia Primatol. 80, 33 (2009).
[13] E. Dumonteil, S. N. Majumdar, A. Rosso, and A. Zoia,

Proc. Natl. Acad. Sci. USA 110, 4239 (2013).
[14] Y. Lanoiselée and D. S. Grebenkov, Phys. Rev. E 96, 022144

(2017).
[15] L. T. Gérard Letac, Am. Math. Mon. 87, 142 (1980).
[16] G. Letac, J. Theoret. Probab. 6, 385 (1993).
[17] J. Randon-Furling, S. N. Majumdar, and A. Comtet, Phys. Rev.

Lett. 103, 140602 (2009).
[18] S. N. Majumdar, A. Comtet, and J. Randon-Furling, J. Stat. Phys.

138, 955 (2010).
[19] R. Eldan, Electron. J. Probab. 19, 1 (2014).
[20] D. S. Grebenkov, Y. Lanoiselée, and S. N. Majumdar, J. Stat.

Mech. (2017) 103203.
[21] Z. Kabluchko and D. Zaporozhets, Trans. Am. Math. Soc. 368,

8873 (2016).

[22] A. Goldman, Probab. Theory Relat. Fields 105, 57 (1996).
[23] G. Claussen, A. K. Hartmann, and S. N. Majumdar, Phys. Rev.

E 91, 052104 (2015).
[24] T. Dewenter, G. Claussen, A. K. Hartmann, and S. N. Majumdar,

Phys. Rev. E 94, 052120 (2016).
[25] H. Schawe, A. K. Hartmann, and S. N. Majumdar, Phys. Rev. E

96, 062101 (2017).
[26] A. K. Hartmann, P. L. Doussal, S. N. Majumdar, A. Rosso, and

G. Schehr, Europhys. Lett. 121, 67004 (2018).
[27] A. Akopyan and V. Vysotsky, arXiv:1606.07141.
[28] H. Touchette, Phys. Rep. 478, 1 (2009).
[29] A. K. Hartmann, Phys. Rev. E 65, 056102 (2002).
[30] A. K. Hartmann, Eur. Phys. J. B 84, 627 (2011).
[31] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
[32] A. Engel, R. Monasson, and A. K. Hartmann, J. Stat. Phys. 117,

387 (2004).
[33] A. K. Hartmann, Phys. Rev. Lett. 94, 050601 (2005).
[34] S. Wolfsheimer, B. Burghardt, and A. K. Hartmann, Algorithms

Mol. Biol. 2, 9 (2007).
[35] P. Fieth and A. K. Hartmann, Phys. Rev. E 94, 022127 (2016).
[36] A. K. Hartmann, Phys. Rev. E 89, 052103 (2014).
[37] K. Kremer and J. W. Lyklema, Phys. Rev. Lett. 54, 267 (1985).
[38] K. Suzuki, Bull. Chem. Soc. Jpn. 41, 538 (1968).
[39] N. Clisby, Phys. Rev. Lett. 104, 055702 (2010).
[40] N. Clisby, J. Stat. Phys. 140, 349 (2010).
[41] G. F. Lawler, Duke Math. J. 47, 655 (1980).
[42] A. J. Guttmann and R. J. Bursill, J. Stat. Phys. 59, 1 (1990).
[43] D. B. Wilson, Phys. Rev. E 82, 062102 (2010).
[44] K. Q. Brown, Inf. Process. Lett. 9, 223 (1979).
[45] A. Andrew, Inf. Process. Lett. 9, 216 (1979).
[46] A. Bykat, Inf. Process. Lett. 7, 296 (1978).
[47] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, ACM Trans.

Math. Software 22, 469 (1996).
[48] P. Stein, Am. Math. Mon. 73, 299 (1966).

062159-9



A. Publications

A.3. Large Deviations of Convex Hulls of the “True”
Self-Avoiding Random Walk

The first author, Hendrik Schawe, is the author of the thesis at hand. Alexan-
der K. Hartmann is the supervising professor of H. Schawe.

This publication is a follow-up project to References [39, 40] and Articles A.1 and A.2
which belong to the same DFG grant HA 3169/8-1. H. Schawe attended the XXX IU-
PAP1 Conference on Computational Physics (CPP 2018) in Davis, CA, USA; this
conference offered to publish original work in the accompanying conference proceed-
ings. Therefore, H. Schawe chose to start new simulations in the spirit of Article A.2
to justify a proceedings publication with original material. Fortunately, the “true”
self-avoiding random walk model showed some surprising behavior, which makes this
publication stand for its own instead of being just a summary of existing works with
a slight extension. The first draft was prepared by H. Schawe, which was then refined
in multiple iterations by A. K. Hartmann and H. Schawe.

1International Union of Pure and Applied Physics

130



Large Deviations of Convex Hulls of the “True”

Self-Avoiding Random Walk

Hendrik Schawe, Alexander K Hartmann
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Abstract. We study the distribution of the area and perimeter of the convex hull of the “true”
self-avoiding random walk in a plane. Using a Markov chain Monte Carlo sampling method, we
obtain the distributions also in their far tails, down to probabilities like 10−800. This enables
us to test previous conjectures regarding the scaling of the distribution and the large-deviation
rate function Φ. In previous studies e.g., for standard random walks, the whole distribution
was governed by the Flory exponent ν. We confirm this in the present study by considering
expected logarithmic corrections. On the other hand, the behavior of the rate function deviates
from the expected form. For this exception we give a qualitative reasoning.

1. Introduction
The random walk is a very simple model for diffusive processes with Brownian motion [1] as
the prime example. Though its applications range from financial models [2] over online search
engines [3] to the very sampling algorithm used in this study [4]. Its simplest variation lives on
a lattice and takes steps on random adjacent sites at each timestep, which is exceptionally well
researched [5]. With the further constraint that no site may be visited twice, such that the walk
is self-avoiding, it becomes a simple model for polymers [6]. Interestingly, depending on the
exact protocol how the self-avoidance is achieved, they can also be used to study the perimeter
of, e.g., critical percolation clusters [7] or spanning trees [8, 9]

The distance of a random walk from its starting point is the most prominent and simple
measurable quantity. Nevertheless, here we go beyond this by considering the convex hull of
all T sites visited by the random walk, i.e., the smallest convex polygon containing all these
sites. It can be seen as a measure of the general shape of the random walk, without exposing
all details of the walk. Thus, the area A or perimeter L of the convex hull can then be used to
characterize the random walk in a very simple way. This method is also used, for example, to
describe the home ranges of animals [10, 11, 12], spread of animal epidemics [13] or classification
of different phases using the trajectory of intermittent stochastic processes [14]. For standard
random walks its mean perimeter [15] and mean area [16] in the large T limit are known exactly
since a long time. More recently different approaches generalized these results to multiple
random walks [17, 18] and arbitrary dimensions [19]. Even more recently the mean perimeter
and area for finite (but large) walk lengths T were computed explicitly [20] if the random walk is
discrete-time with jumps from an arbitrary distribution. If the distribution of the jump length
is Gaussian, even an exact combinatorial formula for the mean volume in arbitrary dimensions
is known [21]. For higher moments however, there is only one analytic result for the special
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case of Brownian bridges [22], i.e., closed walks with Gaussian jumps. When asking for more,
i.e., for the full distributions, no exact analytical results are available. This motivated the
numerical study of the full distributions—or at least large parts of the support—using large-
deviation sampling techniques to sample even far into the tails of standard random walks [23]
and multiple random walks [24], also in higher dimensions [25]. These numerical studies are
rather expensive, since they usually require Markov chain Monte Carlo simulations, allowing
one to measure the distribution in regions where the probabilities are as small as 10−100.

Since self-avoiding walks are considerably more difficult to treat analytically than standard
random walks, there are no analytical results about the properties of their convex hulls
yet. Therefore, the authors of this contribution very recently published a numerical study
of the full distribution of perimeter and area of three different types of self-avoiding random
walks [26], notably the classical self-avoiding walk (SAW) and the smart kinetic self-avoiding
walk (SKSAW). While the SAW is combinatorial in nature and describes the set of all self-
avoiding configurations with equal probability, the SKSAW is a growth process, which assigns
more weight to some configurations. In [26] we also give an estimate for the functional form of
the rate function Φ describing the far right tail behavior of the distribution, i.e., P (S) ≈ e−TΦ(S).
It was found to depend only on the dimension d and the scaling exponent ν. For two-dimensional
random walks these scaling exponents are often known exactly through Schramm-Loewner
evolution [27, 28, 29, 30].

In this study we test this prediction for the “true” self-avoiding walk (TSAW), which has
a free parameter β governing how strictly self-avoiding the walk is. Introduced in [31] the
TSAW was a counter model to the SAW, especially it should demonstrate that the behavior of
the combinatorial SAW is very different from more natural growing random walks which avoid
themselves. Indeed, in two dimensions, where the end-to-end distance r of a T step SAW scales
as r ∝ T ν with ν = 3/4, the TSAW will scale as

r ∝ T ν (lnT )α (1)

with ν = 1/2 [32] and a correction α, which is not known rigorously, but estimated as
α = 1/4 [33]. Here we show, for large-enough values of β, that in contrast to previous work [26]
the rate function Φ is not simply determined by the value of ν, since the growth process of the
TSAW in the large-area region of the tail is indistinguishable from the SKSAW growth process,
although they have different values of the scaling exponent ν determined by the behavior of the
high-probability part of their distributions.

2. Models and Methods
This section will introduce the TSAW model and the sampling method in enough detail to
reproduce the results of this study. For more fundamental methods, like the construction of the
convex hull, we will sketch the main ideas.

2.1. Large Deviation Sampling Scheme
To obtain good statistic in the far tail, it is not sufficient to perform naive simple sampling, since
configurations of probability P would need about 1/P samples to occur at all. It is therefore
not feasible to explore the distributions down to the tails of P < 10−100 with simple sampling.
Instead we use an importance sampling scheme to generate more samples in the low probability
tails. Thus, we generate Markov chains consisting of sequences of TSAWs and use the well
known Metropolis algorithm [34] with a Boltzmann sampling weight. For this purpose, we
identify the quantity S we are interested in—here the area A but it could be any measurable
quantity in principle—with the energy occurring in the Boltzmann factor and introduce an
artificial “temperature” Θ. Since the TSAW is a growth process, it is not trivial to come up



with a local change move within the Markov chain, i.e., it is difficult to change a configuration
by a small amount while preserving the correct statistics. Therefore our Markov chain is not
directly a chain of configurations of TSAW but rather a chain of random number vectors ξi.
Each vector ξi determines a configuration of a TSAW by performing the growth process and
using for each of the T decisions a random number from ξi. This approach is sketched in Fig. 1
and extremely general since it can be applied to any model [35]. A change move is a simple
change of one entry of ξi.

ξ1

S1

ξ2

S2

ξ3

S3

ξ4

S4

ξ5

S5

...
change

accept

change

accept

change

accept

change

reject
...

Figure 1. Sketch of the Markov chain of random number vectors ξi. The change move is
performed on the ξi and a new TSAW is generated from scratch, its energy difference to the
previous configuration is used to accept or reject the change.

Following the Metropolis algorithm, we propose a new ξ′ by replacing a random entry
with a new random number ξ ∈ U [0, 1), generate a new TSAW configuration from scratch
using the random numbers ξ′ and calculating its energy S′, i.e., its area. The proposed
configuration is then accepted, i.e., ξi+1 = ξ′, or rejected, i.e., ξi+1 = ξi, depending on the
temperature and energy difference with respect to the previous configuration with probability
pacc = e−∆S/Θ, where ∆S = S′ − Si is the energy difference caused by the change. Replacing a
random entry by a new entry is clearly ergodic, since any possible ξi can be generated this
way. Since we use the classical Metropolis acceptance probability, detailed balance is also
given. This Markov process will therefore yield configurations ξ according to their equilibrium
distribution QΘ(ξ) = 1

Z(Θ)Q(ξ) e−S(ξ)/Θ, where Q(ξ) is the natural, unbiased distribution of

configurations and Z(Θ) the corresponding partition function. For small temperatures this
will lead to small energies, i.e., smaller than typical perimeters or areas. For large temperatures
typical configurations will be generated and for negative temperatures larger than usual energies
dominate. Since this Metropolis algorithm will generate instances following a Boltzmann
distribution we can easily undo this bias, i.e., we can derive the actual distribution P (S) from
the biased, temperature dependent distributions PΘ(S) as

PΘ(S) =
∑

{ξ|S(ξ)=S}
QΘ(ξ) (2)

=
∑

{ξ|S(ξ)=S}

exp(−S/Θ)

Z(Θ)
Q(ξ) (3)

=
exp(−S/Θ)

Z(Θ)
P (S). (4)

The unknown Z(Θ) can be numerically determined by enforcing the continuity of the
distribution. Therefore we need to simulate the system at many different temperatures Θ, such



that all histograms PΘ(S) overlap with adjacent temperatures. Z(Θ) can now be calculated in
overlapping regions, which should coincide for continuity, i.e.,

eS/Θi Z(Θi)PΘi(S) = eS/Θi+1 Z(Θi+1)PΘi+1(S) (5)

⇒ Z(Θi)

Z(Θi+1)
= exp (S/Θi+1 − S/Θi)

PΘi+1(S)

PΘi(S)
. (6)

This relation fixes all ratios of consecutive Z(Θ). The absolute value can be fixed by the
normalization of the whole distribution.

This method is applicable to a wide range of models, and already successfully applied to
obtain, e.g., the distributions over a large range for the score of sequence alignments [36, 37,
38], work distributions for non-equilibrium systems [35], properties of Erdős Rényi random
graphs [39, 40, 41], and in particular to obtain statistics of the convex hulls of a wide range of
types of random walks [23, 24, 26].

2.2. “True” Self-Avoiding Walk
The “true” self-avoiding Walk (TSAW) is a random walk model, in which the walker tries to
avoid itself, but self-avoidance is not strictly imposed. To construct a TSAW realization one

(a) β = 0 (b) β = 1 (c) β = 100

Figure 2. Examples of typical TSAW realizations at different values of the avoidance parameter
β with their convex hulls. Each walk has T = 200 steps. Larger values of β lead to larger
extended walks characterized by larger areas of their convex hulls.

grows a standard random walk on a lattice and records the number of visits ni to each site i.
For each step the probability to step on a neighboring site i is weighted with the number of
times that site was already visited

pi =
exp (−βni)∑
j∈N exp (−βnj)

, (7)

where the sum over all current neighbors N is for normalization. The free parameter β governs
the strength of the avoidance. Large values of β lead to stronger avoidance, negative values of
β lead to attraction and β = 0 is the special case of the standard random walk. For a selection
of β values typical examples are visualized in Fig. 2. The TSAW is not to be confused with
the classical self-avoiding walk (SAW), which describes the ensemble of all configurations which
do not intersect themselves each weighted the same. In Fig. 3 two partial decision trees are
displayed which visualize the fundamental differences in the weights of the configurations. Even
in the β →∞ limit (Z1 = 3, Z2 = 2) the weights differ. In particular its upper critical dimension



is d = 2 [31], which means that the exponent ν, which characterizes the scaling of the end-to-end
distance r ∝ T ν , is ν = 1/2 with logarithmic corrections, i.e., r ∝ T ν (lnT )α, where α = 1/4 [33]
is conjectured.
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Figure 3. Partial decision trees for SAW and TSAW of walks up to length T = 5. On the right
side of each tree the weight of the configuration is displayed. While the weights for the SAW are
by definition uniform for every valid configuration, the TSAW not only allows self-intersection,
but also has different weights depending on the history of the walk. Note that Z1 = 3+exp(−β)
and Z2 = 2 + 2 exp(−β).

2.3. Convex Hulls
The convex hull of a set of points P in the plane is the smallest convex polygon enclosing every
point p ∈ P and hence also every line between any pair of points. Some examples of convex
hulls are visualized in Fig. 2. The construction of a convex hull of a planar point set is a solved
problem, in the sense that an optimal algorithm exists [42, 43] with result-dependent run time
O(T log h), where T is the number of points |P| and h is the number of vertices of the resulting
convex hull. In practice, however, suboptimal but simpler and for point sets as small as in this
study (T ≈ 106) faster algorithms are used. Especially for planar point sets one can exploit the
fact that a polygon can be defined by the order of its vertices, instead by a list of its facets. The
Graham scan [44] algorithm is based on this fact. After shifting the coordinate origin into the
center of the point set, it sorts the points according to their polar coordinate. Then starting at
an arbitrary point all points are filtered out which are oriented clockwise with respect to the the
previous and next (not-filtered out) points. Iterating this over a full revolution, leaves only the
points which constitute the vertices of the convex hull. This algorithm is dominated by the time
to sort the points, which can be done in O(T log T ). Here, we use Andrew’s monotone chain
algorithm [45], which is a variation of the Graham scan sorting the points lexicographically,
which is slightly faster, instead of by polar angle. Note that this type of algorithm does not
generalize to 3 or higher dimensions. For those cases a different algorithm, like quickhull [46] has
to be used. Before applying the exact algorithm, we reduce the size of the point set with Akl’s



elimination heuristic [47], which removes all points inside, in our implementation, a octagon
of extreme points. Of a few tested polygons the octagon showed the best performance in the
instances we typically encounter in this study.

To calculate the area A of a convex polygon, where the coordinates are sorted
counterclockwise, one can sum the areas of the trapezoids extending perpendicular to the x-
axis

A =
1

2

h−1∑

i=0

(yi + yi+1)(xi − xi+1). (8)

The perimeter L is the sum of the line segments of consecutive points of the hull

L =

h−1∑

i=0

√
(xi − xi+1)2 + (yi + yi+1)2, (9)

with xh ≡ x0 and yh ≡ y0.

3. Results
We simulated the TSAW at two values of β. The limit case of a TSAW, which only steps on
itself, if it has no other choice, was simulated at β = 100. Since the probability to step on already
visited sites is exponential in β, this corresponds to the β →∞ case. Further, we simulated at
β = 1, to capture also the case, which does sometimes voluntarily step on itself.

First, we will look at the behavior of the mean of the perimeter and area. Here, we used
simple sampling for walk lengths in the range T ∈ {2k|10 ≤ k ≤ 23}. Each value is averaged
over 106 TSAWs. Naturally, the mean of geometric volumes scale with their intrinsic dimension
di and a typical length scale r, e.g., the end-to-end distance, as rdi . Using the scaling of r from
Eq. (1), we expect the mean values of the perimeter 〈L〉 (di = 1 in d = 2) and the area 〈A〉
(di = 2) to scale as

S ∝ T diν ln(T )diα (10)

for large values of T . We can even calculate the asymptotic prefactors µ∞ by extrapolating
the scaled values for finite sizes µL = 〈L〉T−1/2 ln(T )−α and µA = 〈A〉T−1 ln(T )−2α to their
asymptotic values µ∞L and µ∞A . For the extrapolation, which is shown in Fig. 4(a), we use a
simple power law with offset µ = µ∞−aT−b, which were already used for this purpose in [23, 24].
The asymptotic values are listed in table 1. As expected the values for the TSAW are larger for
larger β. To our knowledge, there are no analytical calculations for these asymptotic values to
which we could compare to. The given error estimates are only statistical and do not include
the systematic error introduced by the ad-hoc fit function. Nevertheless the convergence of the
values is very well visible, confirming ν = 1/2 and α = 1/4 to be very good estimates.

Direct fits of the form Eq. (10) yield values in good agreement with the expected exponents
for the end-to-end distance r at β = 1, but most other data sets lead to fits overestimating α
and slightly underestimating ν. A possible, at least partial, explanation for this is be that the
relation L(r) is not perfectly linear for the sizes we obtained data for.

We now focus on the main result, on the distribution P (A) of the convex-hull area. These
results were obtained using the large-deviation Markov-chain simulations. We had to perform
simulations for different “temperatures” ranges for each system size and parameter β. For
example T = 128 at β = 1 needed seven temperatures for the right tail θ ∈ [−40,−9] and three
more for the left θ ∈ [7, 40]. For larger system sizes more temperatures are usually needed. For
the β = 1 case at T = 2048 we used 32 temperatures θ ∈ [−3200,−105] to obtain the right
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Figure 4. (a) Extrapolation of the asymptotic mean values of the perimeter and area of the
convex hull. (b) Distribution of all scrutinized walk types with T = 1024 steps. The inset shows
the peak region. Note that the standard random walk (RW) and the β = 0 TSAW coincide.
Also the far right tail of the β = 100 TSAW and SKSAW coincide, but not the main region. The
vertical line shows the maximum area constructable with 1024 steps, which has an area Amax

about 5122/2 ≈ 1.3× 105. The distributions are thus not sampled over their whole support, but
a large region.

µ∞L µ∞A
TSAW β = 0 (exact) 3.5449... 0.7854...
TSAW β = 1 3.636(2) 0.820(1)
TSAW β = 100 4.641(3) 1.339(3)

Table 1. Asymptotic mean values of the area and perimeter scaled by Eq. (10). The values
are obtained by the fit shown in Fig. 4(a). The given error estimates are only statistical and
do not include the systematic error introduced by the ad-hoc fit function. The exact values are
from [19] and converted to a square lattice as described in [26].

tail. For the β = 100 cases we could use similar values for the temperatures. Equilibration
was ensured as described in [26]. In Figure 4(b) we compare distributions of different random
walk types with the result for the TSAW at different values of β. By using the large-deviation
algorithm, we were able to obtain this distribution over hundreds of decades in probability, down
to values as small as P (A) ∼ 10−800 for the largest value of T . Notice that while SKSAW and
TSAW with high values of β show the same behavior in the far tail, where the walks are so
stretched out such that trapping does not play a role anymore. In the main region however,
they are clearly distinct, as is expected due to their different scaling exponent ν. Further,
the parameter β can apparently be used to interpolate the tail behavior between the standard
random walk case and the SKSAW case.

Since we have obtained large parts of the distribution, it would be interesting if the whole
distribution scales the same as the mean values (cf. Eq. (10)). For other types of walks, the
distribution of perimeter and area could indeed be scaled [23, 24, 25, 26] across their full support
only knowing ν, as

P (S) = T−dνP̃
(
ST−dν

)
. (11)



For the TSAW, this collapse, when considering the logarithmic corrections as visualized in Fig. 5,
exhibits an apparent drift towards a limiting shape. Nevertheless, severe finite size effects are
visible, especially in the tails but also in the main region. Despite far larger system sizes T
considered, here the main region collapse is worse than for other kinds of self-avoiding walks as
shown in [26]. The stronger finite size effect may be caused by the fact that all walks start on an
empty lattice. This means for our case that the first steps of the walk behave differently from
the last steps of the walk, when many sites are occupied. Although for the limit of large system
sizes T , the latter should determine the behavior. A possible improvement to simulate TSAWs
is suggested in [33], which is to simulate a much longer walk with t � T steps and look at the
last T steps.
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Figure 5. Distributions of the area of the “true” self-avoiding random walk scaled according
to Eq. (11) plus logarithmic corrections for different values of β and lengths T . The insets show
the main region for 14 values of T ∈ {2k|10 ≤ k ≤ 23} obtained by simple sampling.

The rate function Φ is defined if the distribution obeys the large deviation principle. This
means that the distribution, for large values of T , should decay exponentially in the length T
scaled by the rate function as

PT (s) ≈ e−TΦ(s) . (12)

Usually the parameter s is between 0 and 1. We achieve this by dividing our measured
area by the maximum area, i.e., by measuring s = A

Amax
. In two dimensions the walk

configuration with maximum area is L-shaped with arms of equal length (for odd T ) and therefore

Amax = 1
2

(
T+1

2

)2 ≈ T 2

8 .
Similar to [26] we assume the rate function to be a power law

Φ(s) ∝ sκ, (13)

which seems to agree reasonably well with our data, since the double logarithmic plot Fig. 6
shows that the rate function appears as a straight line in the intermediate tail. The far tail is
dominated by finite-size effects caused by the lattice structure, which leads to a “bending up”
of the rate function. For small values of s, in the high-probability region, the rate function does
not have any relevance. Assuming that the rate function is a power law Eq. (13) and scaling of
the form Eq. (11) is possible, with di being the intrinsic dimension of the observable, e.g., di = 2



for the area, we can derive a value for the power law exponent of the rate function κ. Using the
definition of the rate function Eq. (12)

e−TΦ(ST−di ) ≈ T−diνP̃
(
ST−diν

)
(14)

should hold in the right tail. The T−diν term can be ignored next to the exponential, also the
logarithmic correction is subdominant and would not allow to add any insight. Apparently the
right hand side is a function of ST−diν , such that the left hand side also has to be a function of
ST−diν . This is the case for [26]

κ =
1

di(1− ν)
. (15)
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Figure 6. Rate function Φ for the area with fits to the assumed power-law form. The fit is
performed over a range, where the finite-size influence of the lattice should be small, but the
large T behavior can be extrapolated. Finite-size effects seem more pronounced for larger values
of β.

To test whether the results for the rate function in case of the TSAW obeys this relation, we
estimate the value of κ from our data. Since we have data for various values of the walk length
T , we first extrapolate our data point-wise to large T . For this purpose we fit a power law with
offset, where the parameters depend on the value of s:

Φ(s, T ) = a(s)T b(s) + Φ∞(s). (16)

This results in the value of interest Φ(s) ≡ Φ∞(s), the parameters a(s) and b(s) are only auxiliary
quantities. We perform this extrapolation in a region which is far away from the finite-size effects
of the far tail. In this range of medium values of s the extrapolation according to Eq. (16) works
robustly. Since the bins of the logarithmic histograms we use do not have the same borders for
every system size T , we have a-priory not access to the same value of s for different values of
T . Thus, we use cubic splines to interpolate such that we obtain results for the same value of
s for all walk lengths. We found cubic splines to be sufficient since the bins are rather dense
such that systematic errors introduced by the interpolation should be small. The final values
Φ(s) obtained from the extrapolated values to the assumed form Eq. (13) are shown in Fig. 6 as
symbols. Next, we fit power laws to this data. The values for κ obtained are within errorbars



consistent with κ = 7/6 which is the expected value for the SKSAW (ν = 4/7) and incompatible
with the expected value κ = 1 of ν = 1/2 walks. This behavior is nevertheless plausible since
in the tail (large-area) region, structures, which enable self trapping, i.e., loops, are rare since
they do lead to smaller areas of the convex hull than straight regions. Therefore the influence of
trappings should diminish in the large area tail, which is the main difference in the behavior of
SKSAW and TSAW. Without trappings the TSAW in the β →∞ limit is functionally identical
to the SKSAW. Apparently already β = 1 is large enough to produce this behavior. Therefore
it is natural that the large-area tail behaves the same as the SKSAW. On the other hand, to
possibly see a range where the rate function behaves like a power law with κ = 1 according
to ν = 1/2, one would have to go to much larger system sizes, because one would have to
obtain data to the right of the peak, but for very small values of s = A/Amax � 10−2, where
trappings still do play a role. In particular the analysis might be hampered by the presence of
the logarithmic correction to the mean end-to-end distance.

This means that the TSAW is more complex in comparison to some other types of self-
avoiding walks for which it was possible to predict the tail behavior from the same exponent ν
which predicts the mean behavior. The other types of random walk were under scrutiny in [26],
namely the self-avoiding walk, the loop-erased random walk and the smart kinetic self-avoiding
walk (SKSAW). Instead for TSAW in the large deviation region a different scaling exponent
seems to hold, which is very close to the scaling exponent of the SKSAW.

4. Conclusions
We studied the behavior of the distribution of the area of the convex hull of the “true” self-
avoiding walk, especially in the large deviation regime of larger than typical areas. With a
sophisticated large-deviation sampling algorithm, we obtained the distribution over a large part
of its support down to probabilities smaller than 10−800 for a typical avoidance parameter of
β = 1 and a large avoidance β = 100. The distributions seem to approach a limiting scaling
form when rescaled by the behavior of the mean, but with much stronger finite-size effects as
compared to other types of random walks, which were previously studied.

Using this data we calculated the rate functions. The rate function seem also to behave
qualitatively similar in comparison to other types of self-avoiding walks studied earlier [26] in
that they seem to be well defined and well approximated by a power law. In contrast to other
types of random walks, this power law can apparently not be derived from the scaling exponent
of the mean values ν. Instead it seems that a second exponent governs the scaling behavior of the
tail for the TSAW, which is close to 4/7, the scaling exponent of the smart kinetic self-avoiding
walk. This is plausible since the large-area region should be dominated by configurations in
which no trappings are possible, which is the major difference between these types.

Finally, we also provided estimates for the relevant scale factors of the mean of area and
perimeter of the convex hulls of TSAWs. They might be accessible to analytic calculations in
the future.

For future numerical work it would be interesting to look for further types of random walks,
which show similar effects of distinct scaling exponents for different parts of the distribution
but do not show the strong logarithmic corrections to scaling, and would therefore be easier to
analyze. On the other hand, it would be very exciting if one was able to obtain data in the
range where the rate function exhibits the exponent κ(ν = 1/2) = 1, with the need to simulate
really large system sizes, but closer to the typical behavior.
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The topic of this article was conceived by G. Schehr and S. N. Majumdar. During
a stay at the LPTMS S. N. Majumdar suggested A. K. Hartmann and H. Schawe to
do simulations of a problem they looked at for some time. At this stage the problem
under scrutiny was the sum of the K largest values of N i.i.d. random numbers.
H. Schawe completed simulations, for which to be feasible some improvements to the
used importance sampling algorithm were needed, which were developed in discussions
between A. K. Hartmann and H. Schawe. While it turned out that the sum of the
largest entries is an already solved problem, G. Schehr and S. N. Majumdar conceived
a very closely related problem: the sum of the K smallest values of N i.i.d. random
numbers, which at the same time can be interpreted as a toy model in the spirit of
Derrida’s random-energy model. With the before developed algorithmic improvements
H. Schawe gathered large parts of the distributions, which confirm the analytical results
obtained by G. Schehr and S. N. Majumdar. The first draft was prepared by G. Schehr,
H. Schawe extended it with the numerical results and methods. The final draft contains
improvements originating from all four authors.
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Abstract – We derive analytically the full distribution of the ground-state energy of K non-
interacting fermions in a disordered environment, modelled by a Hamiltonian whose spectrum
consists of N i.i.d. random energy levels with distribution p(ε) (with ε ≥ 0), in the same spirit
as the “Random Energy Model”. We show that for each fixed K, the distribution PK,N (E0) of
the ground-state energy E0 has a universal scaling form in the limit of large N . We compute this
universal scaling function and show that it depends only on K and the exponent α characterizing
the small ε behaviour of p(ε) ∼ εα. We compared the analytical predictions with results from nu-
merical simulations. For this purpose we employed a sophisticated importance-sampling algorithm
that allowed us to obtain the distributions over a large range of the support down to probabilities
as small as 10−160. We found asymptotically a very good agreement between analytical predictions
and numerical results.

Copyright c© EPLA, 2018

The celebrated “Random Energy Model” (REM) of Der-
rida [1] has continued to play a central role in under-
standing different aspects of classical disordered systems,
including spin-glasses, directed polymers in random me-
dia and many other systems. In the REM, one typically
has N energy levels which are considered to be indepen-
dent and identically distributed (i.i.d.) random variables,
each drawn from a probability distribution function (PDF)
p(ε). Typical observables of interest are the partition func-
tion, free energy, etc. The REM can also be useful as a
toy model in quantum disordered systems. For example,
let us consider a single quantum particle in a disordered
medium with the Hamiltonian ĥ. We will assume that the
spectrum of the operator ĥ has a finite number of states N
(for instance a quantum particle on a lattice of finite size
and a random onsite potential, as in the Anderson model).
In general, solving exactly the spectrum of such an oper-
ator is hard, for a generic random potential. One possible
approximation, in the spirit of the REM in classical disor-
dered systems, would be to consider the toy model where
one replaces the spectrum of the actual Hamiltonian by
N ordered i.i.d. energy levels ε1 ≤ ε2 ≤ · · · ≤ εN each
drawn from the common PDF p(ε). Without loss of gen-

erality, we will also assume that the Hamiltonian ĥ has
only positive eigenvalues. This would mean that, in the

corresponding toy model, the PDF p(ε) is supported on
[0, +∞). It is well known that, in a strongly disordered
quantum system, where all single-particle eigenfunctions
are localised in space, the energy levels can be approxi-
mated by i.i.d. random variables (see, e.g., [2]). There-
fore, the REM that we consider here will be relevant in
such strongly localised part of the spectrum of a disor-
dered Hamiltonian.

Now consider a system of K noninteracting fermions
with the Hamiltonian ĤK =

∑K
i=1 ĥi where ĥi is the

single-particle Hamiltonian associated with the i-th par-
ticle. The ground state of this many-body system would
correspond to filling up the single-particle spectrum up to
the Fermi level εK , with one particle occupying each of
the states with energies ε1, ε2, · · · , εK . The ground-state
energy E0 of this many-body system is therefore given by

E0 =

K∑

i=1

εi. (1)

Clearly, E0 is a random variable, which fluctuates from
one realisation of the disorder to another. Given p(ε), we
are interested in computing the distribution PK,N of E0,
for fixed K (i.e., the number of fermions) and N (i.e., the
number of levels). We note that, for K = 1, E0 = ε1 is
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just the minimum of a set of N i.i.d. random variables and
is described by the well-known extreme value statistics [3].
Thus, for general value of K, in particular, it would be in-
teresting to know how sensitive the distribution of E0 is to
the choice of p(ε). For instance, is there any universal fea-
ture of the distribution of E0 that is independent of p(ε)?
We note that E0 is a sum of random variables, but these
random variables are not independent due to the ordering
ε1 ≤ ε2 ≤ · · · ≤ εN (even though the original unordered
random variables are independent). Had they been inde-
pendent, the sum E0 in eq. (1), by virtue of the Central
Limit Theorem, would converge to a shifted and scaled
Gaussian random variable. Here, this is not the case, as
the ordering induces nontrivial correlations between these
variables. The fact that the ordering introduces correla-
tions between otherwise i.i.d. random variables was ob-
served by Rényi in the context of positive i.i.d. random
variables, each distributed purely exponentially [4].

In this paper, we compute exactly the PDF PK,N (E0)
for arbitrary K, N and p(ε) and show that, indeed, a
universal feature emerges in the large-N limit. It turns out
that the limiting distribution of E0, for large N , depends
only on the small ε behaviour of p(ε) ≈ B εα, with α > −1,
but is otherwise independent of the rest of the features of
p(ε). For fixed α and fixed K, as N → ∞, we show that
the distribution of the ground-state energy converges to a
limiting scaling form

PK,N (E0) ≈ b N
1

α+1 F
(α)
K

(
b N

1
α+1 E0

)
, (2)

where b = (B/(α + 1))1/(α+1) is just a scale factor. The

scaling function F
(α)
K (z) (with z ∈ [0, +∞)) is universal

and depends only on α and K. We show that the Laplace

transform of F
(α)
K (z) is given explicitly by

∫ ∞

0

F
(α)
K (z)e−λ z dz =

(α + 1)K

Γ(K)λ(α+1)(K−1)

×
∫ ∞

0

xαe−λx−xα+1

[γ(α + 1, λ x)]
K−1

dx , (3)

where γ(a, x) =
∫ x

0
du ua−1e−u is the incomplete gamma

function. While we can invert formally this Laplace trans-
form (3), it does not have a simple expression for generic
α. However, we can derive the asymptotic behaviour of

F
(α)
K (z)

F
(α)
K (z) ≈

⎧
⎪⎨
⎪⎩

c1 z(α+1)K−1, z → 0,

c2 zα exp

[
−
( z

K

)α+1
]
, z → ∞,

(4)

where c1 = [Γ(α+2)]K

Γ(K+1)Γ((α+1)K) and c2 = (α+1)KK−α−2

Γ(K) are

constants. For the extreme-value case K = 1 our result,

F
(α)
1 (z) = (α+1) zα e−zα+1

, coincides with the well-known
Weibull scaling function [3]. Note that here we are inter-
ested in the sum of K lowest i.i.d. variables supported over
[0, +∞). We remark that in the statistics literature, in a

completely different context, the sum of the top K values
of a set of i.i.d. random variables with an unbounded sup-
port has been studied [5,6]. However, we have not found
our results (2) and (3) in the statistics literature.

We start with a set of N positive i.i.d. random variables
{x1, x2, · · · , xN}, each drawn from a common distribution
p(x), supported on [0, +∞). The joint distribution of these

variables is simply P (x1, · · · , xN ) =
∏N

i=1 p(xi). At this
stage, these variables are unordered. We are interested in
the first K ordered variables {ε1, ε2, · · · , εK} with K ≤ N .
This ordering makes these K variables correlated. Indeed,
the joint distribution of the K lowest ordered variables can
be written explicitly as

P (ε1, · · · , εK) =
Γ(N + 1)

Γ(N − K + 1)

×
K∏

i=1

p(εi)

K∏

i=2

Θ(εi − εi−1)

[∫ ∞

εK

p(u) du

]N−K

. (5)

This result can be easily understood as follows. We first
choose the K distinct variables from an i.i.d. set of N
variables. The number of ways this can be done is sim-
ply the combinatorial factor N(N − 1) · · · (N − K + 1) =
Γ(N + 1)/Γ(N − K + 1) in eq. (5). The probability that

they are ordered is
∏K

i=1 p(εi)
∏K

i=2 Θ(εi − εi−1), where
the Heaviside theta functions ensure the ordering. In ad-
dition, we have to ensure that the N − K remaining vari-
ables are bigger than εK , i.e., the largest value among the
first K ordered variables. Since these N −K variables are
i.i.d., this gives the last factor in eq. (5). The formula in
eq. (5) is exact for any p(ε), K and N . Given the joint
PDF (5), we are interested in the distribution PK,N (E0) of
the ground-state energy E0 in eq. (1). We therefore have

PK,N (E0) =

∫
P (ε1, · · · , εK)δ

(
E0 −

K∑

i=1

εi

)
K∏

i=1

dεi.

(6)
The form of this equation naturally suggests to consider
the Laplace transform with respect to (w.r.t.) E0

〈e−sE0〉 =

∫ ∞

0

PK,N (E0) e−sE0 dE0. (7)

Taking the Laplace transform of eq. (6) gives

〈e−sE0〉 =
Γ(N + 1)

Γ(N − K + 1)

∫ ∞

0

dεK p(εK)e−s εK

×
[∫ ∞

εK

p(u)du

]N−K

JK−1(εK), (8)

where

JK−1(εK) =

∫ K−1∏

i=1

p(εi)e
−sεi dεi

K∏

i=2

Θ(εi − εi−1). (9)

This multiple integral (9) has a nested structure and can
be evaluated easily by induction and one gets

JK−1(εK) =
1

(K − 1)!

[∫ εK

0

du e−sup(u)

]K−1

. (10)
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Using this result in eq. (8), and also replacing, for later
convenience,

∫∞
y du p(u) = 1−

∫ y

0 du p(u), we get the exact
formula

〈e−sE0〉 = K

(
N

K

)∫ ∞

0

dy p(y) e−sy

[
1 −

∫ y

0

du p(u)

]N−K

×
[∫ y

0

dv p(v) e−sv

]K−1

. (11)

This formula has a simple interpretation. Taking the
Laplace transform is equivalent to breaking the system
into two species of random variables of size K and N −K
(this can be done in

(
N
K

)
ways): Each member of the first

species of size K comes with an effective weight p(ε) e−sε,
while in the second species of size N − K each member
comes with an effective weight p(ε). We first fix the K-th
variable to have a value y, whose weight is p(y) e−sy. The
members of the second species should each be bigger than
y (explaining the factor [

∫∞
y

p(u) du]N−K), while the rest

of the (K − 1) members of the first species should each be
smaller than y, explaining the factor [

∫ y

0
dv e−svp(v)]K−1.

Finally, the biggest variable among the members of the
first species can be any of the K members, explaining
the factor K multiplying the binomial coefficient

(
N
K

)
in

eq. (11). With this interpretation, it is clear that eq. (11)
can be easily generalized to any linear statistics of the form
LK =

∑K
i=1 f(εi), where f(ε) is an arbitrary function.

The ground-state energy E0 considered here corresponds
to choosing f(ε) = ε. For general f(ε) the effective weight
of each member of the first species discussed above is just
p(ε) e−sf(ε). Hence the formula in eq. (11) generalises to

〈e−sLK 〉 = K

(
N

K

)∫ ∞

0

dy p(y) e−sf(y)

[∫ ∞

y

p(u) du

]N−K

×
[∫ y

0

dv p(v) e−sf(v)

]K−1

. (12)

In this paper, we will focus only on the case f(ε) = ε.
Below, we thus start with the exact result in eq. (11) and
analyse its behaviour in the large-N limit.

To understand the large-N scaling limit, it is instructive
to start with the K = 1 case. In this case, E0 = ε1 is just
the minimum of a set of N i.i.d. random variables, each
drawn from p(ε). In this case, eq. (11) reads (upon setting
K = 1)

〈e−sE0〉 = N

∫ ∞

0

dy p(y) e−sy

[
1 −

∫ y

0

du p(u)

]N−1

,

(13)
where we replaced

∫∞
y

du p(u) = 1 −
∫ y

0
du p(u), using the

normalisation of p(u). In the large-N limit, the dominant
contribution to the integral over y comes from the regime
of y where the integral

∫ y

0
du p(u) is of order O(1/N). For

other values of y, the contribution is exponentially small
in N , for large N . Hence, we see that, in the large-N limit,
only the small-y behaviour of p(y) matters. Let

p(y) ≈
y→0

B yα, (14)

where α > −1 in order that p(y) is normalisable and
clearly B > 0. Substituting this leading-order behaviour
of p(y) for small y (14) in eq. (13), we get

〈e−sE0〉 ≈ B N

∫ ∞

0

dy yα e−sy exp

(
− B N

α + 1
yα+1

)
.

(15)

Performing the change of variable y =
(
α+1
B N

) 1
α+1 x, we get

〈e−sE0〉 ≈ (α + 1)

∫ ∞

0

dxxα exp

(
− s

b N
1

α+1

x − xα+1

)
,

(16)

where b = (B/(α + 1))1/(α+1). Inverting the Laplace
transform formally, we obtain the scaling form given in

eq. (2) with K = 1 and the scaling function F
(α)
1 (z) has

its Laplace transform as in (3) with K = 1. Inverting this
Laplace transform exactly, we recover the Weibull scal-

ing function F
(α)
1 (z) = (α + 1)zα e−zα+1

. The calculation
for K = 1 shows that only the small-y behaviour of p(y)
matters in the limit of large N . Furthermore, for K = 1,

we see that the typical value of E0 scales as N− 1
α+1 for

large N . We then anticipate that, even for K > 1, the

typical scale of E0 will remain the same E0 ∼ N− 1
α+1 for

large N . Below, we indeed use this typical scale for E0

(and verify a posteriori) and compute the scaling function

F
(α)
K (z) for general K in eq. (2).
We now derive the main results in eqs. (2) and (3) for

all K ≥ 1. Anticipating the scaling E0 ∼ N− 1
α+1 as men-

tioned above, we set

E0 =
1

b
N− 1

α+1 z, (17)

where b is a constant to be fixed later and the scaled
ground-state energy z is of order O(1). Substituting this
scaling form (17) in eq. (11), we see that the left-hand side

(l.h.s.) reads 〈e−sE0〉 = 〈e−sN
− 1

α+1 z/b〉 = 〈e−λ z〉, where

λ = N− 1
α+1 s/b is the rescaled Laplace variable. We will

take the N → ∞ limit, keeping λ fixed. This then corre-
sponds to s → ∞ limit. On the right-hand side (r.h.s.) of
eq. (11) we make a change of variable s y = x̃ as well as
u = ũ/s and v = ṽ/s. This gives

〈e−λz〉 =
K

sK

(
N

K

)∫ ∞

0

dx̃ p

(
x̃

s

)
e−x̃

×
(

1 − 1

s

∫ x̃

0

dũ p

(
ũ

s

))N−K(∫ x̃

0

dṽ p

(
ṽ

s

)
e−ṽ

)K−1

.

(18)

In the large-s limit, we use p(y) ≈ B yα to leading order.
Inserting this behaviour in eq. (18), we get

〈e−λz〉 ≈ K BK

s(α+1)K

(
N

K

)∫ ∞

0

dx̃ x̃α e−x̃

×
(

e
− B(N−K)

(α+1) sα+1 x̃α+1
)

[γ(α, x̃)]
K−1

, (19)
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where we recall that γ(a, x) =
∫ x

0 du ua−1e−u is the in-

complete gamma function. We now use s = (λ b)N
1

α+1

and choose

b =

(
B

α + 1

) 1
α+1

. (20)

Furthermore, in the large-N limit K
(
N
K

)
∼ NK/Γ(K).

Using these results, and rescaling x̃ = λx, we arrive at

〈e−λ z〉 =
(α + 1)K

Γ(K)λ(α+1)(K−1)

×
∫ ∞

0

xαe−λx−xα+1

[γ(α + 1, λ x)]
K−1

dx. (21)

This clearly shows that the distribution of the rescaled

random variable z = (E0 b)N
1

α+1 (see eq. (17)) con-

verges to an N -independent form F
(α)
k (z) for large N ,

whose Laplace transform is given by
∫∞
0 F

(α)
K (z)e−λ z dz =

〈e−λ z〉. Therefore, eq. (21) demonstrates the result an-
nounced in eq. (3).

Special cases α = 0. – In this case eq. (3), using
γ(1, λ x) = 1 − e−λx, reduces to

∫ ∞

0

F
(0)
K (z)e−λ z dz =

1

Γ(K)λK−1

∫ ∞

0

dx e−(λ+1)x
(
1 − e−λ x

)K−1
=

Γ(1 + 1/λ)

λk Γ(k + 1 + 1/λ)
. (22)

Using the properties of the Γ-function, one can express the
r.h.s. of (22) as a simple product

∫ ∞

0

F
(0)
K (z)e−λ z dz =

K∏

m=1

1

1 + m λ
. (23)

To invert this Laplace transform, we note that the
r.h.s. has simple poles at λ = −1/m with m = 0, 1, · · · , K.
Evaluating carefully the residues at these poles, we can in-
vert this Laplace transform explicitly and get

F
(0)
K (z) =

K∑

n=1

(−1)K−n nK−1

(K − n)! n!
e−z/n. (24)

For instance,

F
(0)
1 (z) = e−z, (25)

F
(0)
2 (z) = e−z/2 − e−z, (26)

F
(0)
3 (z) =

3

2
e−z/3 − 2 e−z/2 +

1

2
e−z . (27)

Numerical simulations. – Next, we verify our analyt-
ical predictions via numerical simulations. To test the pre-
diction of the scaling behaviour in eq. (2), as well as to test

the universality of the associated scaling function F
(α)
K (z),

we consider four different distributions for the energy
levels: a) an exponential distribution p(ε) = e−ε Θ(ε),

b) an half-Gaussian distribution p(ε) =
√

2
π e−ε2 Θ(ε),

c) a Pareto distribution p(ε) = 2
ε3 Θ(ε − 1) and d) p(ε) =

εe−ε Θ(ε). The cases a) and b) clearly correspond to
α = 0. Hence we expect the scaling function to be given

by F
(0)
K (z) in eq. (24). The Pareto case c), with support

over [1, +∞), also corresponds to the α = 0 case, as seen
easily after a trivial shift ε → ε− 1. Hence, in this case as

well, we expect the scaling function to be given by F
(0)
K (z).

However, case d) is different as it corresponds to α = 1 and

hence the scaling function should be given by F
(1)
K (z). In

fig. 1, we compare the simulation results with the analyt-
ical predictions and find very good agreement. Note that

in cases a)–c), the scaling function F
(0)
K (z) has an explicit

expression as in eq. (24). Hence, it is easy to compare
directly the simulation results with this expression (as in
fig. 1(a)–(c)). However, for case d), where α = 1, we do

not have a simple explicit formula for F
(1)
K (z), though we

have explicitly given its Laplace transform in eq. (3) with
α = 1. Hence, to compare with the simulation results,
we first needed to invert this Laplace transform using an
arbitrary precision library [7]. This comparison is shown
in fig. 1(d).

To obtain the presented numerical results one has to
generate N random numbers according to the desired
probability density p(ε). Using a standard method, we
first choose a uniform random number η ∈ [0, 1] and then
generate ε using the formula,

∫ ε

0
p(ε′) dε′ = η. The expo-

nential a) and Pareto c) cases can be trivially obtained
using this relation [8]. In the half-Gaussian case b), the
Gaussian random numbers can be generated using the
Box-Muller method [8]. In the case d), p(ε) = εe−ε,
the above relation reads η =

∫ ε

0
p(ε′)dε′ = 1 − (1 + ε)e−ε,

which can also be inverted using the −1 branch of the
Lambert W function [9] ε = −W−1

(
η−1
e

)
− 1. To

evaluate the Lambert W function, we use the GSL
implementation [10].

The sum E0 in eq. (1) is completely determined by
the values η = (η1, . . . , ηN ). If one simply generates
many times vectors η of independent uniform random
numbers and correspondingly obtained random numbers
(ε1, . . . , εN), one will obtain only typical results for E0,
i.e., those having a high enough probability. Here, we
sample the distributions over a broad range of the support,
also in the far tails, where the probabilities are extremely
small. For this purpose, we use a well-tested importance
sampling scheme [11,12]. Here the vectors η are sampled
using the Metropolis algorithm including a bias of samples
away from the main part of the distribution. We use a bias
e−E0/T , where T is a “temperature” parameter which can
be positive and negative and allows us to address different
ranges of the distribution. Since the bias is known, the
Metropolis results can be corrected for the bias to obtain
the actual distribution. This enables us to gather good
statistics also in the far tails.
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Fig. 1: (Colour online) Scaled distribution PK,N (E0) for K = 20, for different values of N and for four different distribution
p(ε). The insets show the behaviour near the peaks for the four different cases. Panel (a) shows exponentially distributed p(ε) =

e−ε Θ(ε) which corresponds to α = 0 and b = 1 (see eq. (2)). Panel (b) shows half-Gaussian distributed p(ε) =
√
2√
π
e−ε2/2 Θ(ε)

corresponding to α = 0 and b = p(0) = 2√
2π

. Panel (c) shows Pareto distributed energy levels p(ε) = 2
ε3

Θ(ε− 1). After shifting
ε → ε − 1, i.e., E0 → E0 − K, this falls in the α = 0 universality, with b = 2. The finite-size extrapolation is shown in black
circles (see text and eq. (29) with β = 1). Panel (d) shows energy levels distributed according to p(ε) = εe−ε Θ(ε). This
corresponds to the α = 1 universality class, with the scaling parameter b = 1/

√
2. Again, using the finite-size scaling form (see

text and eq. (29)) with β = 1/2. The theoretical scaling function F
(1)
20 (z) is obtained from the numerical Laplace inversion of

eq. (3), setting K = 20 and α = 1.

To be more concrete, we use a Markov chain η(t) =
η(0),η(1), . . . . Every move η(t) → η(t + 1) consists of
changing one entry of η(t) leading to a trial η′ (“local up-
date”). While the simplest method to change would be
the replacement of one uniform-distributed random num-
ber by a freshly drawn one, as used in ref. [12], this will
lead to difficulties especially for small values K. For the far
tails, there will be a point where all entries of η are almost
one (or almost zero) and almost every new proposal will be
rejected, since it is improbable to draw a random number
very close to the previous one. Therefore, we perform a
slightly more involved protocol, where instead of redraw-
ing we change an entry ηi → ηi + ξδ, where ξ ∈ [−1, 1] is
uniformly distributed and δ ∈ {10−i|i ∈ {0, 1, 2, 3, 4, 5}}
with uniform probability 1/6. Thus, δ determines the
scale of the local change. Changes resulting in an en-
try ηi �∈ [0, 1) are directly rejected, i.e., η(t + 1) = η(t).
Changes are accepted, i.e., η(t+1) = η′, with the Metropo-
lis acceptance ratio pacc = min{1, e−∆E0/T }, where ΔE0

is the change in energy caused by the proposed change,
and otherwise also rejected.

Sampling this Markov chain at different temperatures,
results in a histogram PT (E0) for each temperature, which
can be corrected for the bias using

P (E0) = eE0/TZ(T )PT (E0). (28)

The a priori unknown normalization parameter Z(T ) can
be obtained by enforcing continuity and normalization of
the whole distribution, which is obtained from performing

simulations for several values of T , including T = ∞,
which corresponds to simple sampling. We will not go
into further details, since this algorithm is well described
in several other publications [11–13].

For the Pareto distributed case p(ε) = 2
ε3 Θ(ε − 1), we

used instead a modified Wang-Landau sampling [14,15]
with subsequent entropic sampling [16,17]. We used
Wang-Landau sampling for this case, since the tempera-
tures are harder to adjust, i.e., for negative temperatures
it happens quickly that equilibration becomes impossible
and the energy increases constantly. This effect is already
known to pose difficulties for the aforementioned sampling
with bias [18,19].

We set K = 20 in fig. 1 and compare the distribution
PK=20,N (E0) for different values of N . We verify, by a
data collapse, the scaling form predicted in eq. (2) and also
compare the numerical scaling function to the analytical
ones.

While the exponential case fits very well to the analytic
result even for small values of N , the other cases show
strong finite-size effects especially in the extreme right tail.
Such finite-size effects are known to occur frequently in the
extreme statistics of i.i.d. random variables [20]. As seen
in fig. 1, the discrepancy between the numerical and the
analytical results is very small in the main region (i.e.,
in the bulk). In the tails, we need to use a finite-size
ansatz to study the convergence of the numerical results
as N → ∞. For example, it is natural to expect that the
finite-size corrections to the leading scaling form in eq. (2)
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Fig. 2: (Colour online) We consider the tails of the distribution PK=20,N (E0) for the case p(ε) = εe−ε, corresponding to α = 1.

The scaling function in this case is given by F
(1)
K=20(z). The asymptotic behaviours of F

(1)
K=20(z) in eq. (4), for z → 0 (left tail,

in (a)) and z → ∞ (right tail in (b)) are compared to numerical simulations. The data have been plotted on a scale such that
the two cases from eq. (4) appear as straight lines. In (b), for clarity, only three different values of N have been plotted.

are of the form

PK,N (E0) = b N1/(1+α)

×
[
F

(α)
K (z) + N−βG

(α)
K (z) + N−2βH

(α)
K (z) + . . .

]
, (29)

where β = min(1/(1+α), 1), z = b N1/(α+1)E0 is the scal-

ing variable, and G
(α)
K (z), H

(α)
K (z) describe the finite-size

scaling of the correction terms. Thus, for α = 0 one has
β = 1, while for α = 1, we have β = 1/2. For several val-
ues of z, we extrapolate the data by fitting pointwise the
numerical data in fig. 1 as a function of N , to obtain esti-

mates for the asymptotes F
(α)
K (z). We treated the cases c)

(corresponding to α = 0, and hence β = 1) and d) (α = 1,
β = 1/2), the extrapolated values are shown as symbols.
Furthermore, in fig. 2, we show the behaviour in the tails
for the case d), which exhibits the strongest finize-size ef-
fects, such that the asymptotic behaviour eq. (4) is directly
visible. It is apparent that the convergence for large val-
ues of N is faster in the left tail z → 0, while it is much
slower in the right tail z → ∞.

Conclusion. – In this paper, we have studied analyti-
cally and numerically the full distribution of the ground-
state energy of K non-interacting fermions in a disordered
environment, modelled by a Hamiltonian whose spectrum
consists of N i.i.d. random energy levels with distribution
p(ε) (with ε ≥ 0), in the same spirit as the “Random
Energy Model”. This ground-state energy is the sum of
the smallest K values drawn from a probability distribu-
tion and, therefore, a generalization of the extreme-value
statistics, which corresponds to the case K = 1. Thus, our
results should be of interest also in a very general mathe-
matical context.

We have shown that for each fixed K, the distribution
PK,N (E0) of the ground-state energy has a universal scal-
ing form in the limit of large N (see eq. (2)). This uni-
versal distribution depends only on K and the exponent
α characterizing the small-ε behaviour of p(ε) ∼ εα. We
derive an exact expression for the Laplace transform of
this scaling function in eq. (3). For generic α, the asymp-
totic behaviors of the scaling function are derived explic-
itly in eq. (4), while for the special case α = 0, the Laplace
transform can be explicitly inverted, giving the full scaling

function in eq. (24). Numerically, while the peak region of
the distribution of E0 can be easily estimated by standard
methods, estimating the tails of the distribution where
the probability is very small is hard and requires more
sophisticated techniques. In this paper, using an impor-
tance sampling algorithm, we were able to estimate the
tail probabilities (up to a precision as small as 10−160)
and thereby to verify the theoretical predictions. Thus,
the main conclusion of our work is that, even though the
individual energy levels are independent random variables,
the ordering needed to compute the ground-state energy
induces effective correlations between the energy levels.
These effective correlations then lead, for the ground-state
energy, to a whole new class of universal scaling functions
parameterised by K and α.

In this work, we have modelled the single-particle energy
levels of a quantum disordered system by i.i.d. random
variables, à la REM. This REM approximation for the
energy levels is known to be valid for disordered Hamilto-
nians whose eigenstates are strongly localised in space [2].
Thus, we expect that the results presented in this paper
for the universal distribution of the ground-state energy
would apply to such strongly disordered quantum systems.
It is then natural to ask what happens to the ground-
state energy for Hamiltonians with weakly localised eigen-
states. In some weakly localised systems, a description
based on Random Matrix Theory (RMT) [2] is a good ap-
proximation, where the energy levels (identified with the
eigenvalues of a random matrix) are strongly correlated
with mutual level repulsion. In this RMT context, sev-
eral linear statistics of ordered eigenvalues have been re-
cently introduced and studied for large N under the name
of truncated linear statistics (TLS) [21,22]. The ground-
state energy in eq. (1) or more generally the linear statis-
tics as in eq. (12) studied here are instances of TLS, but
for i.i.d. random variables. It would thus be interesting to
see how the TLS, studied here for i.i.d. variables, crosses
over to the RMT case, as one goes from the strongly lo-
calised part of the spectrum of a disordered Hamiltonian
to the weakly localised part.
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A. Publications

A.5. Large deviations of the length of the longest increasing
subsequence of random permutations and random walks

The first author Jörn Börjes worked as part of his Bachelor’s thesis at the University of
Oldenburg in the working group of Alexander K. Hartmann on the distributions of the
longest increasing subsequences in variously constructed sequences. Hendrik Schawe,
is the author of the thesis at hand. Alexander K. Hartmann is the supervising professor
of H. Schawe.

This project was conceived at the LPTMS after a talk of J. Ricardo G. Mendonça
about a similar topic in a discussion between S. N. Majumdar, A. K. Hartmann and
H. Schawe. After a preliminary feasibility test of H. Schawe, J. Börjes started working
on the problem advised by H. Schawe and A. K. Hartmann. The first draft was
prepared by J. Börjes and improved in some iterations by all authors.
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Large deviations of the length of the longest increasing subsequence
of random permutations and random walks
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(Received 17 January 2019; published 2 April 2019)

We study numerically the length distribution of the longest increasing subsequence (LIS) for random
permutations and one-dimensional random walks. Using sophisticated large-deviation algorithms, we are able
to obtain very large parts of the distribution, especially also covering probabilities smaller than 10−1000. This
enables us to verify for the length of the LIS of random permutations the analytically known asymptotics of the
rate function and even the whole Tracy-Widom distribution. We observe a rather fast convergence in the larger
than typical part to this limiting distribution. For the length L of LIS of random walks no analytical results are
known to us. We test a proposed scaling law and observe convergence of the tails into a collapse for increasing
system size. Further, we obtain estimates for the leading-order behavior of the rate functions in both tails.

DOI: 10.1103/PhysRevE.99.042104

I. INTRODUCTION

We study the length distribution of the longest increas-
ing subsequence (LIS) [1] of different ensembles of random
sequences. A subsequence of a sequence S consists of el-
ements of S in the same order as in S. But neighbors in
the subsequence are not necessarily neighbors in S. For a
LIS it is required that the elements of the subsequence are
increasing from left to right, and the number of elements in
the subsequence is maximal.

The first mention of this problem involving random permu-
tations (RPs) is from Stanisław Ulam [2] and is also known as
“Ulam’s problem.” In his study the mean length L of LIS on
RP of n integers were examined by means of Monte Carlo
simulations. It was conjectured that, in the limit of large n, the
length converges to L = c

√
n, with a constant c, which was

later proven to be c = 2 [3]. In the following years much work
was published scrutinizing the large-deviation behavior of this
problem, and explicit expressions for both the left (lower) and
right (upper) tail were derived rigorously [4–6]. Interestingly,
for the LIS of RPs it was shown that the length distribution
P(L) is a Tracy-Widom distribution [7].

The Tracy-Widom distribution was at that time only known
from random matrix theory, where it describes the fluctuations
of the largest eigenvalues of the Gaussian unitary ensem-
ble (GUE), an ensemble of Hermitian random matrices. In
physics it came into focus after an explicit mapping of an 1 +
1-dimensional polynuclear growth model [8]. Subsequently
other mappings of 1 + 1-dimensional growth models belong-
ing to the Kardar-Parisi-Zhang universality like an anisotropic
ballistic deposition were found [9]. Other models, in which
the Tracy-Widom distribution appears, include the totally
asymmetric exclusion process [10] and directed polymers

*joern.boerjes@uni-oldenburg.de
†hendrik.schawe@uni-oldenburg.de
‡a.hartmann@uni-oldenburg.de

[11]. For a pedagogical overview of the relations of different
models exhibiting a Tracy-Widom distribution there are some
review articles, e.g., Refs. [12–14]. Fluctuations in growth
processes following the Tracy-Widom distribution could also
be observed in experiments, e.g., from growing liquid crystals
where the Tracy-Widom distribution of the GUE appears for
circular growth [15] and of the Gaussian orthogonal ensemble
(GOE) for growth from a flat surface [16].

The Tracy-Widom distribution seems to occur always to-
gether with a third-order phase transition between a strongly
interacting phase in the left tail and a weakly interacting phase
in the right tail [17]. For these third-order phase transitions,
the probability density function behaves in the left tail as
P(x) ≈ e−n�− with the role of the free energy played by
the rate function �−(x) ∼ (a − x)3 for x → a from the left,
where the scaled mean value a is the critical point of the
transition. Here n is some large parameter, e.g, the system
size. The O(x3) leading-order behavior of �− generally leads
to a discontinuity in the third derivative of the free energy
and therefore to a third-order phase transition. This seems
to be a characteristic sign predicting the main region of the
distribution to follow a Tracy-Widom distribution. Therefore
the behavior of the far tails of these problems is of great
interest to understand this connection better. Consequently
the large deviations of some of these models were studied
thoroughly [17,18].

For the length distribution in the RP case the large devia-
tions, the behavior for large values of n including the far tails,
are known analytically [4–7]. These show the characteristic
behavior of the above mentioned left-tail rate function. For the
case of random walks (RWs), bounds for the behavior of the
mean are known [19], and there is also numerical work which
is concerned with the distribution in the typical region [20],
i.e., those LISs which occur with a high enough probability of
about � 10−6. We also deem it worthwhile to look closer at
the tails of the distribution for finite systems.

For the purpose of studying the large deviations of this
problem numerically, we utilize sophisticated large-deviation

2470-0045/2019/99(4)/042104(7) 042104-1 ©2019 American Physical Society
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FIG. 1. Visualization of random sequences of length n = 1000
where the value is plotted over the corresponding index. Marked with
circles are the entries of one possible LIS. (a) Random permutation
(RP), (b) random walk (RW).

sampling methods to observe the distribution P(L). In this
way we can observe directly the far tails of the Tracy-
Widom distribution for the RP case [7] and can confirm
the known large n asymptotics [6]. The second ensemble
are one-dimensional RWs with increments from a uniform
distribution. While we can observe the scaling proposed in
Ref. [20] for the main region, the tails are subject to consider-
able finite-size effects. Nevertheless the distributions collapse
over larger regions for larger sizes n. Also, we give estimates
for the leading-order behavior of the rate functions governing
the left and right tails of the distribution P(L).

This study first introduces the different ensembles of in-
terest and the algorithms used to obtain the distribution of the
length in Sec. II. Section III shows the results we gathered and
interprets them. We conclude this study in Sec. IV.

II. MODELS AND METHODS

To define the LIS, we have to define a subsequence first.
Given some sequence S = (S1, S2, . . . , Sn) a subsequence of
length L is a sequence s = (Si1 , Si2 , . . . , SiL ) (1 � i j � n, i j <

i j+1 for all j = 1, . . . , L) containing only elements present in
S in the same order as in S, though possibly with gaps. An
increasing subsequence has elements such that every element
in s is smaller than its predecessor, i.e., Si j < Si j+1 for j =
1, . . . , L − 1. The LIS is consequently the longest, i.e., the
one with the highest number L of elements, of all possible
increasing subsequences. Note that the LIS is not necessarily
unique, but by definition its length is unique. As an example
two different LISs are marked by overlines and underlines in
the following sequence: S = (3, 9, 4, 1, 2, 7, 6, 8, 0, 5).

In this study the sequence S is drawn either from the
ensemble of random permutations of n consecutive integers
or from the ensemble of random walks with increments
δ j ( j = 1, . . . , n) from a uniform distribution δ j ∼ U (−1, 1),
such that

Si =
i∑

j=1

δ j . (1)

An example of each sequence with the corresponding LIS
marked is shown in Fig. 1.

To find L of any given sequence, we use the patience
sort algorithm. We introduce only the very simple version to

obtain the length, but a comprehensive review of the connec-
tion of patience sort with the LIS can be found in Ref. [3].
In short, the patience sort algorithm works as follows: We
iterate over the n entries Si and place each into an initially
empty stack (or pile) a j on the smallest j such that for the
top entry top(a j ) > Si holds. Note that this always ensures
that the top entries of a are ascendingly sorted, such that we
can determine j by a binary search in O(ln n). Finally, the
number of nonempty stacks a j is equal to the length L of
the LIS.

A. Large-deviation sampling

To be able to gather statistics of the large-deviation regime
numerically [21], we need to apply a sophisticated sampling
scheme. Therefore we use a well-tested [22–24] Markov
chain Monte Carlo sampling which treats the system as a
canonical system at an artificial temperature with the observ-
able of interest as its energy. Since the algorithm has been
presented comprehensively in the literature, we here mainly
state the details specific to the current application. In our case,
we identify the state of the system with the sequence, the
length L with the energy and sample the equilibrium state
at temperature � using the Metropolis algorithm [25,26].
Controlling the temperature allows us to direct the sampling
to different regimes of the distributions, to eventually cover
the distribution over a large part of the support. To evolve
our Markov chain of sequences, we have to introduce change
moves, which modify a sequence and consequently the energy
L. For the RP we swap two random entries, and for the RW we
replace one of the increments δ j [cf. Eq. (1)] by a new random
number drawn from the same uniform distribution. These
changes are accepted according to the Metropolis acceptance
ratio

Pacc = min(1, e−�L/�), (2)

where �L is the change in energy due to the change move.
This Markov chain of sequence realizations converges to an
equilibrium state. As usual with Markov chain Monte Carlo
simulations, we need to ensure equilibration and that the
samples are decorrelated [26].

In equilibrium the realizations generally have a lower than
typical energy for low temperatures and typical energies for
high temperatures. We also introduce negative temperatures
for larger than typical energies. This way the temperature can
be tuned to guide the simulation towards realizations within a
specific range of energies L. We know the equilibrium distri-
bution Q�(S) at temperature � of realizations, i.e., sequences
S, to be

Q�(S) = 1

Z�

e−L(S)/�Q(S), (3)

with the natural distribution Q(S), i.e., the distribution of
realizations arising by simply generating subsequences uni-
formly. This can be exploited to correct for the bias introduced
by the temperature and arrive at the unbiased distribution
P(L) with good statistics also in the regions unreachable by
simple sampling. Therefore consider the sampled equilibrium
distributions P�(L). To connect them to the distribution of
realizations Q�(S), we can sum all realizations with the same
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FIG. 2. Intermediate step after correction with Eq. (6) but before
determination of the values Z�i (i.e., all Z�i = 1). The data are
gathered for RW sequences of length n = 512. Each shade of gray
(color) is sampled at a different temperature �, and for three data
sets the corresponding temperatures are annotated. (For clarity some
evaluated temperatures are omitted.)

value of L, leading to

P�(L) =
∑

{S|L(S)=L}
Q�(S) (4)

=
∑

{S|L(S)=L}

1

Z�

e−L(S)/�Q(S) (5)

= 1

Z�

e−L(S)/�P(L). (6)

Solving this equation for P(L) allows us to correct for the bias
introduced by the temperature. An intermediate snapshot of
this process is shown in Fig. 2.

The constants Z� can be obtained by enforcing continuity
of the distribution,

P� j (L)eL/� j Z� j = P�i (L)eL/�i Z�i , (7)

for pairs of i, j for which the gathered data P�i (L) overlap
with P� j (L). While this can be used to approximate the ratios
of pairwise Z�i , the absolute value can then be obtained
by normalization of the whole distribution. This procedure
requires a clever choice of temperatures, since gaps in the
sampled range of L would make it impossible to find a ratio of
Z�i on the left and right sides of the gap. We use on the order
of 100 distinct temperatures. In general, the larger the size n,
the more temperatures are needed.

III. RESULTS

Before we look into the large-deviation tails, we in brief
present some simple sampling results addressing the quali-
tative difference of RP and RW cases, which are visible in
Fig. 1. The entries of the RW are strongly correlated such that
the RW typically consists of runs with downward or upward
trends. This means that the LIS is typically confined in an
upward trend, and its entries therefore are close together. The
RP, on the other hand, typically shows LISs with entries over
the whole range.

To quantify this effect we measure the fraction of the
sequence over which the LIS spans. For multiple system

0.94
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0.51

0.54

103 104 105

ρ
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RW

n

FIG. 3. Extrapolation of the span ρ. Measurements at different
sizes n are used to extrapolate an asymptotic span according to a
power law with offset ρ = anb + ρ∞. Fits to this expression for n �
4096 are marked by a line. The two obtained asymptotic values are
ρ

rp
∞ = 1.00005(2) for the RP and ρ

rp
∞ = 0.439(7) for the RW. Note

the broken ρ axis. Error bars are smaller than the width of the line.

sizes 1024 � n � 524 288, 106 samples each, we measure
the positions i, j of the first and last entries of a found LIS
to calculate its relative span ρ = ( j − i)/n. We extrapolate
the mean span with an offset power law ρ = anb + ρ∞ to
extrapolate the asymptotic span ρ∞, which is shown in Fig. 3.

For the RP we get a value of ρ
rp
∞ = 1.00005(2) and for the

RW ρ
rp
∞ = 0.439(7). Note that these numbers are subject to

two sources of systematical errors, which can explain, e.g.,
the impossible result of ρ

rp
∞ > 1. First, the function we use to

extrapolate is an ansatz, which considers only leading-order
behavior of the actual scaling function. Second, we obtain
only one LIS per sequence via the backpointer extension of
patience sort [3], which might result in a biased selection of
LISs. Both questions merit further research on their own but
are beyond the scope of this article. This means that LISs of
RPs typically span the whole sequence, while LISs of RWs
typically span only less than half of the sequence, such that its
entries are closer together.

To gather statistics of L, we apply the temperature-based
sampling scheme for the two cases of RPs and of RWs with
uniform increments. In both cases, we study five different
system sizes n up to n = 4096 each.

A. Random permutations

First, we look at the LIS length distribution of RPs. For this
case there are already many properties known in the limit of
n → ∞.

It is known that the distribution should converge to a
suitably rescaled Tracy-Widom distribution χ of the GUE
ensemble [7] for large values of n as

Pn[(L − 2
√

n)n−1/6] = χ [(L − 2
√

n)n−1/6]. (8)

Rescaled to compensate for this leading behavior, our results
are shown in Fig. 4. By using the large-deviation approach, we
are able to measure probabilities as small as 10−1000 and less,
allowing us to go beyond the first numerical work [20] on the
distribution of LISs. We can observe a very good collapse up
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FIG. 4. Numerically obtained distributions for different system
sizes n rescaled according to Eq. (8). The Tracy-Widom distribution
is drawn as a black line [27] and is expected to be the curve all dis-
tributions collapse onto. The inset shows a zoom on the intermediate
tails. On the left the tendency of our data towards the Tracy-Widom
distribution with increasing system size n is visible. (For clarity some
data points are discarded to show the same density of symbols for
every system size.)

to probabilities of 10−200 of our data onto the Tracy-Widom
distribution given in the tables of Ref. [27].

Also note that the collapse works very well in the in-
termediate right tail but converges a bit slower in the left
tail and far slower in the far-right tail. The inset zooms
into the intermediate tail of the probability density function
P > 10−100, where the collapse fits very well to the expected
Tracy-Widom distribution. In the far tails we observe consid-
erable deviations, from the tabulated data, which are at least
in part caused by finite-size effects due to the relatively small
sizes n of our sequences. For a more extensive study of these
finite-size effects, one could obtain the empirical distribution
for more sizes, and extrapolate the finite-size effects to n →
∞, as done in Ref. [28]. We do not attempt this analysis
here, since the very small deviations between different values
of n in the right tail suggest that data for much larger sizes
would be needed for a meaningful extrapolation. This is at the
moment not computationally feasible for us. Nevertheless, our
numerically obtained tails fit very well to another expected
form, which will be explained later, such that we assume a
stronger influence of corrections to scaling in the far tails
instead of systematic errors in our data.

Also note that while we can sample a very large part of
the distribution P(L) in the RP case—even including events
with a probability less than 10−1000 for the largest systems—
we cannot reach across the whole range of possible values.
Possible approaches to extend this range are improvements to
our sampling algorithm by, e.g., switching to a better change
move or trying a different sampling algorithm like Wang-
Landau’s method [29].

The left-tail asymptotic, i.e., L/
√

n = x < 2, of the proba-
bility density function is given by the analytically known rate
function [5,6]

lim
n→∞

1

n
ln Pn(L) = −2H0(x) (9)
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FIG. 5. Empirical rate functions for different system sizes n. On
the top (triangles down) scaled as ln Pn(L)/

√
n to emphasize the

right-tail behavior. On the bottom (triangles up) scaled as ln Pn(L)/n
to emphasize the left tail behavior. The analytically known rate
functions for both tails 2H0 and U0 are shown in the correspondingly
scaled region and a convergence of the data to these functions is well
visible. The leading-order terms of the series expansion (cf. Ref. [4])
are also shown as straight lines next to the rate function.

with

H0(x) = −1

2
+ x2

8
+ ln

x

2
−

(
1 + x2

4

)
ln

(
2x2

4 + x2

)
;

(10)

the right-tail asymptotic, i.e., L/
√

n = x > 2, is given by [4,6]

lim
n→∞

1√
n

ln Pn(L) = −U0(x) (11)

with

U0(x) = 2x cosh−1(x/2) − 2
√

x2 − 4. (12)

Note that Eq. (11) behaves atypically for a rate function as
the distribution behaves like Pn ∝ e−√

nU0 , which according
to the definition (e.g., Ref. [30]) does therefore not fulfill
the large-deviation principle. Nevertheless, it describes the
right-tail behavior of the distribution in leading order.

We use our sampled data to test these rate functions. If the
data are suitably rescaled according to Eqs. (9) and (11), in the
corresponding tails we can observe a very nice convergence
of the data to the rate functions. This is plotted in Fig. 5. This
excellent agreement of analytical and numerical results over
hundreds of decades in probability gives us confidence that
our approach works well and can be extended to cases where
no analytical results are known. Also note that we can observe
in our data the leading-order behavior of the left-tail rate
function H0, which goes with the exponent 3 characteristic
for the third-order phase transition, confirming its connection
with the Tracy-Widom distribution [17].

B. Random walks

The second class of sequences S we scrutinize are RWs.
The distribution beyond the high-probability peak region
seems to be unknown. Again, by applying the large-deviation
approach, we sample basically the whole distribution and
can even compare the right tail of our distribution with the
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FIG. 6. Probability distributions Pn(L) of the length of the LIS of
RWs with exact extreme values for the n = L case. (For clarity only
every 40th bin is visualized, including the n = L bin.)

corner case of L = n, which occurs only if all increments δ

are positive and therefore with probability 2−n. This case is
marked in Fig. 6 to emphasize the quality of our data. For the
left tail, we can not sample so far, as the very steep decline of
the distribution is difficult to handle for our sampling scheme.

For RWs with increments from a symmetric uniform distri-
bution, indeed for increments from any symmetric distribution
with finite variance, the scaling of the mean as 〈L〉 ∝ nθ and
the variance as σ 2 ∝ n2θ was observed in Ref. [20] with θ =
0.5680(15) for finite system sizes. This observation lead to
the assumption that the whole distribution follows the scaling
form

Pn(L) = 〈L〉g(〈L〉L), (13)

with a not explicitly known function g. Even more, Ref. [20]
suggests that their measurements can be explained, instead of
the exponent θ , by a logarithmic correction to a square-root
scaling:

〈L〉 ≈ 1

e

√
n ln n + 1

2

√
n. (14)

Using our data for the tails of the distribution, we can test
whether this scaling holds over the whole distribution or only
in the main region. If we rescale the axis of the plot suitably,
the distributions for different sizes n should collapse on the
scaling function g, in the case that Eq. (13) holds. Note that the
related problem of the longest weakly increasing subsequence
for RW increments of ±1 is known to scale also with

√
n but

does not exhibit the logarithmic correction [19]. Our collapse
in Fig. 7 following Eq. (13) supports the validity of Eq. (14).
The collapse does work except for the very far tails, which
is an effect—at least partially—caused by finite-size effects,
since the length of the LIS can for finite n never be longer
than n. This pattern occurs often when looking at the far tails
of discrete systems, e.g., for the convex hull of RWs on lattices
in Refs. [31–34] or in a toy model for noninteracting Fermions
in a landscape with n random energy levels [28].

Since for the rate functions characterizing the LIS length
distribution of RWs there is no known result, we use our
numerical data to give a rough estimate of the rate function.
Therefore we look into the empirical rate function �n(L) =

FIG. 7. Collapse of different system sizes on a common curve g
from Eq. (13), with 〈L〉 given by Eq. (14). Apparently the far tail
shows corrections to the proposed scaling for finite sizes, which are
explained by finite-size effects, e.g., that there is a maximum length
of n for finite systems. For increasing sizes n a convergence to a
common curve is visible. The inset shows the same in linear scale
around the maximum. (For clarity not all data points are drawn.)

1
n ln Pn(L), which is plotted in Fig. 8 for the data already
shown in Fig. 6.

Using the empirical rate function we can obtain the asymp-
totics of the rate function from our data. Note that to estimate
the right-tail rate function we use the intermediate tail and not
the far tail, which is bending up due to finite-size effects, as
the very long LISs are suppressed by the hard limit of L � n..
Since we are interested only in the leading-order exponent of
the rate function, i.e., assuming �(L) ∝ Lκ for very small and
very large values of L, we can rescale the axes arbitrarily due
to the scale invariance of power laws. For convenience we
look at x = L/Lmax to limit the range to the interval [0,1]. For
the left tail we observe a leading-order behavior of the rate
function of approximately �(L) ∼ L−1.6 and for the right tail
�(L) ∼ L2.9. Note that the exponent of the left tail is clearly
distinct from 3, such that it does not show signs of a third-
order phase transition. Also it does not show a Tracy-Widom
distribution in the main region (also see Ref. [20]), which is
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FIG. 8. Empirical rate function �n(L) for the length of the LIS
of RWs. The two straight lines are obtained by power-law fits and
show the leading-order behavior of the rate function for each tail.
(For clarity not every data point is shown.)
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�4096(L) of the RP and the RW.

consistent with the expectation that these two properties do
occur together [17].

A comparison of this leading-order behavior to the be-
havior of the RP case, as visualized in Fig. 5, shows that
the tails decay differently. For a direct comparison of our
results consider Fig. 9. While the right-tail exponent is larger
in the RW case, the probability density decays slower (i.e.,
the empirical rate function increases slower). This apparent
contradiction is understandable when considering that the rate
function of the RP case grows much faster near the minimum
at 〈L〉 before it settles into the asymptotic behavior. The RW
case behaves exactly opposite, such that the branches left and
right of the minimum show opposite curvature in the two
cases. Generally, this leads to a distribution P(L) which is
much broader in the RW case, especially towards quite large
values of L.

IV. CONCLUSIONS

We obtain numerical data for the distribution of the
length of the longest increasing subsequence for two
cases of sequences of random numbers, namely, for RPs
and for one-dimensional RWs. By applying sophisticated
large-deviation algorithms, we are able to sample the
distributions over literally hundreds of decades in probability.
The case of RPs is already well studied analytically in the
literature, and we are able to confirm, to the best of our
knowledge, for the first time these analytical results. Since
our data are gathered for finite system sizes, we can observe
a rather fast convergence to the analytical results valid in
the n → ∞ limit. These results also show the validity and
convergence of our simulations. For the case of RWs we can

observe the leading-order behavior of the rate function far into
the tails. Also our data support the scaling assumption Eq. (13)
[20] for the whole distribution including the logarithmic term,
which is not present for weakly increasing subsequences in
RWs with ±1 steps [19]. This result could be used to guide
analytical work on this topic and to test future analytical
results. A direct comparison of the empirical rate functions
in the tails shows qualitatively very different behavior. While
the rate function of the RW seems to be a convex function,
the RP case consists, in principle, of two concave parts.

A possible future direction extending this work would be
an interpolation between the RP and RW case, where one
could observe the change of the exponents governing the rate
function. Since a set of distinct random numbers δ j drawn
uniformly from [−1, 1] should show the same statistics for the
longest increasing subsequence of a RP, we could introduce a
parameter c governing the correlation length. The sequence
would be constructed as Si = ∑i

j=max(0,i−c) δ j . For c = 0 this
would correspond to a RP and for c = n to a RW. In addition
to this simple type of correlation, one could study power-law
correlated random numbers or increments, leading possibly to
even more complicated behavior.

Furthermore, it is of interest to analyze the actual LIS
in particular with taking the degeneracy into account. For
this purpose one must use a dynamic programming approach,
which exhibits a running time of O(n2) instead of the O(n ln n)
complexity of the algorithm which obtains just the length of
the LIS. Nevertheless, the dynamic programming approach
would allow one to compare different LISs for every real-
ization of the sequence, whether they are rather similar or
possibly very different, depending on the type of sequence.
Also one could study the distribution of the LIS entropy with
similar large-deviation techniques as applied here. Further-
more, this would allow to measure a correlation between LIS
length and span in a statistical unbiased way, going beyond
the results shown in Fig. 3.
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Abstract. We study the size of the largest biconnected components in sparse Erdős–Rényi graphs with
finite connectivity and Barabási–Albert graphs with non-integer mean degree. Using a statistical-mechanics
inspired Monte Carlo approach we obtain numerically the distributions for different sets of parameters over
almost their whole support, especially down to the rare-event tails with probabilities far less than 10−100.
This enables us to observe a qualitative difference in the behavior of the size of the largest biconnected
component and the largest 2-core in the region of very small components, which is unreachable using simple
sampling methods. Also, we observe a convergence to a rate function even for small sizes, which is a hint
that the large deviation principle holds for these distributions.

1 Introduction

The robustness of networks [1–5] attracted much inter-
est in recent time, from practical applications for, e.g.,
power grids [6–8], the internet [9,10], to examinations of
genomes [11,12]. As typical in network science, one does
not only study the properties of existing networks. To
model the properties of real networks, different ensembles
of random graphs were devised, e.g., Erdős–Rényi (ER)
random graphs [13], small world graphs [14], or scale-free
graphs [15]. Also for such ensembles the robustness has
been studied by analytical and numerical means [16–19].
One often used approach to determine the robustness of
networks are fragmentation studies, where single nodes
are removed from the network. These nodes are selected
according to specific rules (“attack”) or randomly (“fail-
ure”). The functionality, e.g., whether it is still connected,
is tested afterwards. It has been suggested that the large
deviations are of interest to network robustness, e.g., for
the size of the giant connected component, rare config-
urations of the realization of the damage to networks
may change the typically continuous phase transition to a
discontinuous phase transition [20,21]. A property neces-
sary for robustness is thus that the graph stays connected
when removing an arbitrary node. This exact concept is
characterized by the biconnected component, which are
the connected components which stay connected after
an arbitrary node is removed. The existence of a large
biconnected component is thus a simple and fundamen-
tal property of a graph robust to fragmentation. Another,

a e-mail: hendrik.schawe@uni-oldenburg.de

though related, often studied form of stability looks at
the flow through or the transport capability [10] of a
graph. Also here a large biconnected component is a good
indicator for stability. Intuitively, in a biconnected com-
ponent there is never a single bottleneck but always a
backup path to reach any node. This ensures the function
of the network even in case that an arbitrary edge has too
low throughput or an arbitrary node of the biconnected
component is damaged.

At the same time, the biconnected component is a sim-
ple concept enabling to some extent its treatment by
analytical means for some graph ensembles. For example,
the mean size 〈S2〉 of the biconnected component for a
graph with a given degree distribution is known [18]. Also,
the percolation transition of the biconnected component
for scale-free and ER graphs is known to coincide with
the percolation transition of the single connected compo-
nent, and its finite size scaling behavior is known [22].
Nevertheless, a full description of any random variable is
only obtained if its full probability distribution is known.
To our knowledge, concerning the size of the biconnected
component this has not been achieved so far for any graph
ensemble, neither analytically nor numerically.

For few network observables and some graph ensem-
bles results concerning the probability distributions have
already been obtained so far. For the size of the connected
component on ER random graphs analytical results [23]
for the rate function exist, i.e., the behavior of the full
distribution for large graph sizes N . Numerically it was
shown that this is already for relatively small N a very
good approximation [24]. Corresponding numerical results
for two-dimensional percolation have been obtained as
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well [24]. Similarly there are numerical, but no analyti-
cal works, scrutinizing the size of the related 2-core over
most of its support again for ER random graphs [25].

Since similar results seem not to be available concern-
ing the biconnected components, and given its importance
for network robustness, this is an omission that we will
start to cure with this study. Here, we numerically [26]
obtain the probability density function of the size of the
largest biconnected component over a large part of its sup-
port, i.e., down to probabilities smaller than 10−100. This
enables us also to directly observe large deviation prop-
erties, and shows strong hints that the large deviation
principle holds [27,28] for this distribution.

The remainder of this manuscript gives definitions of
the graph ensembles and the properties of interest, as well
as some known results, in Section 2.1 and explains the
sampling methods needed to explore the tails of the distri-
butions in Section 2.2. The results of our simulations and
a discussion will follow in Section 3. Section 4 summarizes
the results.

2 Models and methods

2.1 Biconnected components of random graphs

A graph G = (V,E) is a tuple of a set of nodes V and edges
E ⊂ V (2). A pair of nodes i, j are called connected, if there
exists a path of edges {i, i1}, {i1, i2}, .., {ik−1, ik}, {ik, j}
between them. A cycle is a closed path, i.e., the edge
{i, j} exists and i and j are connected in G′ = (V,E \
{i, j}). The connected components are the maximal dis-
joint subgraphs, such that all nodes of each subgraph are
connected.

A biconnected component (sometimes bicomponent) of
an undirected graph is a subgraph, such that every node
can be reached by two paths, which are distinct in every
node except the start and end node. Thus, if any single
node is removed from a biconnected component it will still
be a connected component. Therefore clearly, each bicon-
nected component is a connected component. We will also
look shortly at bi-edge-connected components, which are
very similar, but the two paths may share nodes as long
as they do not share any edge. Note that a biconnected
component is always a bi-edge-connected component, but
the reverse is not necessarily true. An example is shown
in Figure 1. In this study, we will study mainly the largest
biconnected component Gbi. Note that, while every bicon-
nected component is also a connected component, the
largest biconnected component does not need to be a sub-
graph of the largest connected component Gcc, it may be
part of another, smaller, connected component. However,
its size S2 = |Gbi| is always smaller or equal than the size
of the largest connected component S = |Gcc|. Similarly,
the size S2-core of the largest connected component of the
2-core, the subgraphs that remain after iterative removal
of all nodes with degree less than 2, is an upper bound on
S2, since the 2-core of a graph consists of bicomponents
possibly linked by single edges. In Figure 1, the largest
components of each type are visualized for an example
connected graph. In fact for the sizes of the largest of the

Fig. 1. Every node is part of the connected component, nine
nodes with bold borderline are part of the 2-core, six nodes
containing a circle are part of the largest bi-edge-connected
component and all nodes containing a black dot are part of
the largest biconnected component.

above introduced subgraphs, the following relation holds.

S ≥ S2-core ≥ S2-edge ≥ S2. (1)

As we will see below, for the ensemble of ER random
graphs in the percolating phase, the distributions of
S2-core, S2-edge, and S2 are actually very similar to each
other. One has indeed to inspect the far tails of the dis-
tributions to see differences, which also justifies that we
study the large-deviation properties here. For the ensem-
ble of Barabási–Albert (BA) graphs we study, the same
is true. While the distributions of S2-core and S2 look
very similar in the main region, a qualitative difference
is observable in the tail of small components. The differ-
ence is even more pronounced than for the ER case, since
the general form of the distribution changes qualitatively
to a convex shape for P (S2-core).

The classical way to find biconnected components of a
graph [29] is based on a depth first search and thus runs in
linear time. For each connected component a depth first
search is started at an arbitrary root node of that compo-
nent. For each node the current depth of the search, i.e., at
which level in the tree traversed by the depth first search
the node is located, and the lowpoint saved. The lowpoint
is the minimum of the depth of the neighbors (in the
graph) of all descendants of the node (in the tree). Iff the
depth of a node is less or equal the lowpoint of one of its
children (in the tree), this node separates two biconnected
components and is called articulation point. For the root
node of the search there is an exception. It is an articula-
tion point, iff it has more than one child. The articulation
points separate biconnected components and are members
of all biconnected components separated by them. A bet-
ter illustrated explanation can be found in reference [30].
After finding all biconnected components, we measure
the size of the largest. We used the efficient implemen-
tation of this algorithm provided by the LEMON graph
library [31].

The mean size of the biconnected component of graphs
with a given degree distribution pk is known for large
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graphs [18,32] to be

〈S2〉 = 1−G0(u)− (1− u)G′0(u), (2)

where G0(z) =
∑

k pkz
k is the probability generating

function, G′0 its derivative, and u the probability to reach
a node not part of the giant connected component when
following an edge. u is determined by the solution of

u =
∞∑

k=0

qku
k, (3)

with the excess degree distribution qk = (k + 1)pk+1/ 〈k〉.
Knowing the degree distribution of ER graphs G(N, p)
to be

pk =

(
N − 1

k

)
pk(1− p)N−1−k, (4)

allows the numerical evaluation of equation (3). We will
compare these predictions to our simulational results to
scrutinize the behavior for finite N .

The ensemble of ER graphs G(N, p) consists of N nodes
and each of the N(N − 1)/2 possible edges occurs with
probability p. The connectivity c = Np is the average
number of incident edges per node, the average degree.
At cc = 1 this ensemble shows a percolation transition.
That is in the limit of large graph sizes N the size of
the largest connected component is of order O(N) above
this threshold and of order O(1) below. Interestingly this
point is also the percolation transition of the biconnected
component [22].

To a lesser extent we also study BA graphs [15]. The
ensemble of BA graphs is characterized by a tunable mean
degree 〈k〉 and its degree distribution follows a powerlaw
p(k) ∝ k−3. Realizations are constructed using a growth
process. Starting from a fully connected subgraph of m0

(here m0 = 3) nodes, in every iteration one more node is
added and connected to m ≤ m0 existing nodes j with
a probability pj ∝ kj dependent on their degree kj until
the size of the graph is N . The parameter 2m = 〈k〉 by
construction. Since m = 1 will always result in a tree,
which is not biconnected at all and m ≥ 2 will always
be a full biconnected component, we will allow fractional
1 < m < 2 in the sense, that one edge is always added and
a second with probability m− 1.

We also take a brief look at the configuration model
(CM) [33], an ensemble of graphs constructed to follow an
arbitrary degree distribution. To sample the space of all
simple graphs, i.e., graphs without self-loops and multi-
edges, of the CM, one has to generate first a random
degree distribution, add stubs to the nodes according to
the degree distribution, connect the stubs randomly, and
start from scratch in the case that the result is not a sim-
ple graph [34]. This means the amount of random numbers
needed to generate one instance of a CM graph will vary,
sometimes very strongly, if the instances are “difficult” to
construct.

2.2 Sampling

Since we are interested in the far tail behavior of the dis-
tribution of the size of the largest biconnected component,
it is infeasible to use naive simple sampling, i.e., uniformly
generating configurations, measuring the observable, and
constructing a histogram. Instead we also use a Markov
chain Monte Carlo-based importance sampling scheme to
collect good statistics in the far tails. This technique was
already applied to obtain the distributions over a large
range for the score of sequence alignments [35–37], to
obtain statistics of the convex hulls of a wide range of
types of random walks [38–41], to work distributions for
non-equilibrium systems [42], and especially to different
properties of ER random graphs [24,25,43,44].

The Markov chain in this case is a chain of random
number vectors ξt, t = 1, 2, . . . Each entry of ξt is drawn
from a uniform U(0, 1) distribution. Each vector serves
as an input for a function which generates a random
graph. Since all randomness is included in ξt, the gener-
ated graph Gt = G(ξt) depends deterministically on ξt. In
this way, the Markov chain {ξt} corresponds to a Markov
chain {Gt} of graphs. This approach, of separating the
randomness from the actually generated objects, has the
advantage that for the Markov chain we can generate
graph realizations of arbitrary ensembles from scratch,
without having to invent a valid Markov chain change
move for each ensemble. However, for ER graphs, we use
a specialized change move for performance reasons. One
change move is to select a random node i, delete all inci-
dent edges, and add every edge {i, j} with j ∈ V \ {i}
with probability p. For the BA graphs such a simple
change move is not trivial to construct. Therefore, for this
type, we perform the typical growth process from scratch
after changing one of the underlying random numbers
in ξt.

The main idea to obtain good statistics over a large
part of the support, especially for probabilities smaller
than, say, 10−100, is to bias the generated samples toward
those regions. Therefore, we will use classical Metropolis
sampling to gather realizations of graphs G. The Markov
chain underlying this method consists of either graph real-
izations G (ER case) or random number vectors ξ from
which a graph realization can be constructed G(ξ) (BA
case). We will describe the process for the latter more gen-
eral case. We start our Markov chain with some random
state ξ1 and at every iteration we propose a new state ξ′,
i.e., replace a single entry of ξt with a new uniform ran-
dom number, and generate a new realization G(ξ′) from
these random numbers. We will accept this proposal as
the new state ξi+1, with the classical Metropolis accep-
tance probability pacc = min{1, e−∆S/T }. This process is
sketched in Figure 2. Since we are interested in the size
of the largest biconnected component S, we will treat this
observable as the “energy” of the realization. Thus, ∆S
is the difference in energy between the old and proposed
state. Otherwise the proposal is rejected, i.e., ξt+1 = ξt.
Following this protocol, the Markov chain will equilibrate
eventually and from thereon yield realizations G(ξ) which
are Boltzmann distributed with respect to some “artificial
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Fig. 2. Four steps of our importance sampling scheme
at a small negative temperature, biasing toward a larger
biconnected component.

temperature” T

QT (G) =
1

ZT
e−S(G)/T Q(G), (5)

where Q(G) is the natural distribution of the realizations
and ZT the partition function, i.e., a normalization con-
stant. Now, we can use the temperature T as a tuning
parameter to adjust the part of the distribution we want to
gather samples from. Low positive temperatures will bias
the “energy” S toward smaller values because decreases
in S are always accepted and increases in S are more
often rejected. For negative T this bias works in the oppo-
site way toward larger values of S, i.e., larger biconnected
components in this case.

Note that, while this scheme is generally applicable to
any model, there are models which are infeasible to equi-
librate. As an example take the CM. The above described
construction poses the problem that we use two types of
random numbers. The first N random numbers to gener-

ate a degree distribution pk and the remainder
∑N−1

k=1 kpk
for the connections between the stubs. Thus, the amount
of random number varies somehow. But this is true only
if in the first attempt a valid set of edges is created. If
not, one would need to perform for the current degree
sequence one or several other attempts, creating the need
for many more random numbers. Thus, a state ξ of the
random numbers would be much larger, containing many
numbers “in stock”, much larger than needed to construct
a typical graph which requires only one attempt. First,
this makes in somehow numerically demanding. But even
worse, in total this means that a small change to one of
the first N random numbers typically leads to a strong
change of the resulting graph, such that almost all changes
of this kind will be rejected when approaching the tails. It
might, of course, be possible to devise an efficient change
move. Nevertheless, we were not able to sample the bicon-
nected component of the CM in the far tails, and will only
use data obtained by simple sampling for some qualitative
comparisons of the three graph ensembles.

For any chosen temperature, the sampling will be
restricted to some interval determined by the value of T .
Thus, to obtain the desired distribution P (S) over a large
range of the support, simulations for many different tem-
peratures have to be performed. We have to choose the

temperatures T in a certain way, to be able to reconstruct
the wanted distribution P (S) from this data. First, we can
transform Q(G) into P (S) by summing all realizations G,
which have the same S. Hence we obtain with equation (5)

PT (S) =
∑

{G|S(G)=S}
QT (G)

=
∑

{G|S(G)=S}

exp(−S/T )

ZT
Q(G)

=
exp(−S/T )

ZT
P (S).

With this relation we can calculate the wanted, unbiased
distribution P (S) from measurements of our biased dis-
tributions PT (S). The ratios of all constants ZT can be
obtained by enforcing continuity of the distribution P (S),
i.e.,

PTj (S) eS/Tj ZTj = PTi(S) eS/Ti ZTi .

This requires that our measurements for PT (S) are at
least pairwise overlapping such that there is no unsampled
region between sampled regions. From pairwise overlaps
the pairwise ratios ZTi

/ZTj
can be approximated. The

absolute value of the ZT can afterwards be obtained
by the normalization of P (S). Although the size of the
largest biconnected component S2 is a discrete variable
for every finite N and should therefore be normalized such
that the probabilities of every event should sum to one,

i.e.,
∑N

i=0 p(S2 = i/N) = 1, we are mainly interested in
the large N behavior and especially the rate function.
This limit is continuous and should therefore be treated
with a different normalization

∫ 1

0
p(S2) dS2 = 1, which we

approximate for finite N by the trapezoidal rule. Anyway,
the difference here is just a factor N .

While this technique does usually work quite well and
all distributions but one exception are obtained with this
method, there are sometimes first order phase transitions
within the finite temperature ensemble, rendering it infea-
sible, or at least very tedious, to acquire values inbetween
two temperatures. This was a problem here for the modi-
fied BA graph at the largest simulated graph size N . This
phenomenon is well known and explored in detail in [24].
We filled this gap by modified Wang–Landau simulations
[45–49] with subsequent entropic sampling [50,51].

3 Results

We applied the temperature-based sampling scheme to ER
with finite connectivities of c ∈ {0.5, 1, 2} and BA with
m = 1.3 over practically the whole support S2 ∈ [0, 1]
using around a dozen different temperatures for each
ensemble and Markov chains of length 106N to gather
enough samples after equilibration and discarding cor-
related samples. Additionally for BA the range S2 ∈
[0.1, 0.35] was sampled using Wang–Landau’s method and
merged into results obtained from the temperature-based
sampling for the remainder of the distribution. All error
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Fig. 3. Distributions of the size of the largest biconnected
component S2 for ER graphs at connectivity c = 2 and three
different graph sizes N . The main plot shows the distribu-
tions in logarithmic scale to display the tails, the inset shows
the same distributions in linear scale, where a concentration
around the mean value 〈S2〉 (cf. Fig. 4) is visible. Note that
despite PN (S2) being a discrete distribution, it is normalized
like a continuous distribution (see second to last paragraph
of Sect. 2 for the rationale). (For clarity not every bin is
visualized.)

estimates for the distributions are obtained via bootstrap
resampling [52,53] but are always smaller than the sym-
bol size and therefore not shown. Error estimates for
fit parameters are Gnuplot’s asymptotic standard errors
corrected according to reference [53].

Examples for the distribution of the largest biconnected
component’s size for ER graphs at c = 2 are depicted in
Figure 3 at three different graph sizes N . The inset shows
the distribution in linear scale, where a concentration with
increasing size N around the mean value is visible. While
the main part of the distribution in the inset looks rather
symmetric, the tails are obviously not. Also it is visi-
ble that the tails of the distribution get more and more
suppressed when increasing the value of N .

Since the mean size of the biconnected component
of ER is known for large enough graphs, we will com-
pare the mean sizes of our simulations to the analytical
expectation. Those results are shown in Figure 4, notice
the broken 〈S2〉-axis. Apparently at c = 2 for small
sizes N the analytical approximation, while close to our
measurements, overestimates the size of the biconnected
component slightly but the relative error diminishes for
larger sizes. In fact, we extrapolated our measurements
to the limit of large N using a power-law ansatz 〈S2〉 =
aN b + S∞2 yielding for c = 0.5 an offset S∞2 compatible
within errorbars with the expectation 〈S2〉 = 0 (exact val-
ues in the caption of Fig. 4), which is quite remarkable for
our ad hoc fit function. The case c = 1 suggests a negative
S∞2 close to zero, which is probably caused by correction to
our assumed scaling law. The case c = 2 seems to converge
to the limit of the analytical expectation also.

To compare the sizes of different relevant types of
components, Figure 5 shows the distributions of the rel-
ative size of the largest connected component S [24], the
largest 2-core S2-core [25], the largest bi-edge-connected

Fig. 4. Mean size of the largest biconnected component
〈S2〉 for different graph sizes N . Notice the broken 〈S2〉-axis.
The black line denotes the analytic expectation for c = 2
from equation (2) [18]. The expectation for c ≤ 1 is 〈S2〉 = 0.
Fits to a power law with offset 〈S2〉 = aNb + S∞2 lead to
S∞2 = −6(8) × 10−6 for c = 0.5, S∞2 = −0.0013(4) for c = 1,
and S∞2 = 0.4729(3) for c = 2.

Fig. 5. Comparison of the relative sizes Sa, which can be
any of the largest connected component S [24], the largest
2-core S2-core [25], the largest bi-edge-connected component
S2-edge, and the largest biconnected component S2 for N = 500
and c = 2 ER graphs. The last three are nearly identical for
sizes Sa & 0.2. The inset shows a zoom to the very small com-
ponents, which is the only region, where the three last types
deviate considerably from one another. For clarity not every
data point is visualized.

component S2-edge, and the largest biconnected compo-
nent S2 for N = 500 and c = 2 ER graphs. Interestingly,
the distributions PN (S2), PN (S2-edge), and PN (S2-core) are
almost identical and only deviate in the region of very
small components from each other. As would be expected
by the order of equation (1), the probability to find very
small 2-cores is lower than to find bi-edge-connected com-
ponents of the same small size, which are again slightly
less probable than biconnected components of that size.
Anyway, when considering ER graphs, which exhibit
by construction no particular structure, the robustness
properties which are determined by the biconnected com-
ponent, can be with very high probability readily inferred
from the 2-core.
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Fig. 6. Correlation histogram of our raw and biased simu-
lational data for the c = 2 ensemble of ER graphs. A large
biconnected component does most probably appear in graphs
whose connected component is larger than S & 0.6. This is
a qualitative correlation plot only, as the exact values of
the bins are dependent on the temperatures used for the
simulation. The colorbar encodes a normalized probability
density to encounter the corresponding pair of values in our
finite-temperature ensembles.

To understand the reason for the sizes S2, S2-edge, and
S2-core to be so similar for graphs with independently cre-
ated edges like ER and CM, consider the argumentation of
reference [18], where an upper bound equation (2), which
becomes exact for N →∞, is derived as the probability of
a node to have two edges connecting to the giant compo-
nent. For finite graphs this is just an upper bound, as two
paths to the giant component are necessary for a node
to be part of the giant biconnected component but not
sufficient. To be sufficient, we have to ensure that the two
paths do not share any nodes (or any edges for the bi-edge-
connected component). Similarly, this criterion also works
for the giant 2-core in the limit of large N , but here it does
not provide an upper bound, because two independent
paths are not necessary. For a node to not be a leaf at some
point in the process of finding a 2-core, it has to be con-
nected with two edges to other biconnected components,
possibly the same. To be part of the giant two core it has to
be in the connected component. Using the argumentation
of reference [18] that small biconnected components are
very rare for large values of N , we see that the two bicon-
nected components with which any node of the giant 2-
core is connected are with high probability just part of the
giant biconnected component. One would therefore expect
that in the N → ∞ case these observables behave the
same. And indeed, in our data we observe that the regime
where they behave most differently is in graphs with atyp-
ically small sizes of the components, again highlighting
the power of the large-deviation approach without which
it would be impossible to observe these differences. Keep
in mind that this argument does only work for models
with independently placed edges, like the ER or CM mod-
els. Indeed we will see below that for the BA model, the
differences between the component types are much larger.

To understand the topology of the instances of very
low probabilities better, we will look at the correlations

of the size of the largest connected component S and
the largest biconnected component in Figure 6. Note that
this histogram does not reflect the probabilities, but does
count the instances we generated within one of our sim-
ulations, i.e., data for many different temperatures are
shown without correction for the introduced bias. Any-
way, it is instructive to look at this sketch for qualitative
understanding. This data is for c = 2 ER at N = 500. We
observe that, even for our biased sampling, there are basi-
cally no large biconnected components if the connected
component is smaller than S . 0.6. Above this point, we
observe larger biconnected components, but generally very
few around the size S2 ≈ 0.2. Above S & 0.6 the size of
the largest biconnected component is strongly correlated
with the size of the largest connected component.

For a qualitative understanding of this behavior, con-
sider the following heuristic argument. For the instances
without or with very small biconnected components, i.e.,
only short cycles, the graph is basically tree-like. Larger
biconnected components are then created by connecting
two nodes of the tree with each other, leading to a cycle
which is on average in the order of the size of the tree,
leading to the jump in the size of biconnected components.
The configurations with smaller biconnected components
are apparently entropically suppressed.

Next we will look at the empirical large deviation rate
function of the measured distributions. The rate function
Φ describes the behavior of distributions, whose probabil-
ity density decays exponentially in the tails in respect to
some parameter N . In this case, the parameter N is the
graph size. For increasing graph size N the biconnected
components which are not typical will be exponentially
suppressed. To be more precise, the definition of the rate
function Φ(S2) ≥ 0 is via PN (S2) = e−NΦ(S2)+o(N) for the
large N limit with the Landau symbol o(N) for terms of
order less than N . If a rate function exists, we can read
off, for example, that the value S∗2 at which the rate func-
tion Φ(S∗2 ) = 0 is the value around which the probability
concentrates, i.e., the size of the biconnected component
is self averaging.

Since we obtained the distributions PN over most of
their support but at finite N , we can only access the
empirical rate function ΦN for finite values of N , i.e.,

ΦN (S2) = −1/N logPN (S2) + o(N)/N. (6)

Note also that the empirical rate functions do contain all
information of the measured distributions PN , such that
we will only visualize either PN or ΦN in the following.
Note also that the o(N) term leaves enough freedom at
finite N to shift the empirical rate function a bit such
that negative values can occur. However, if for increasing
values ofN a convergence to a limiting curve is visible, this
limiting curve is the actual rate function and one says the
distribution follows the large deviation principle [27,28].

In Figure 7 the empirical rate functions for ER at dif-
ferent connectivities c and for different sizes N are shown.
The data of the distribution has a very high precision as
the values of the rate function Φ500 in Figure 7a reaches
values of Φ500 = 1.5 corresponding to probabilities less
than 10−300. Already these comparatively small values
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Fig. 7. Empirical rate function ΦN (S2) for multiple graph sizes N and connectivities c of the ER graph ensemble; (a) below
the percolation transition, (b) at the percolation transition and (c) above the percolation transition. For the cases (a) and (b)
finite size effects are minor and a very fast convergence towards the rate function valid for large values of N is visible. The case
(c) shows a qualitatively different behavior, where the minimum of the empirical rate function is shifted to finite values. The
convergence towards the actual rate function is visible.

of N show remarkably similar empiric rate functions and
strongly hint at a convergence to a limit form. Also, while
near the minima negative values of the empirical rate
function occur, it is clear that the convergence is toward
zero at those positions, such that it is plausible that the
actual rate function is non-negative. While the empiri-
cal rate functions in the right tail for larger than typical
components S2 are already almost indistinguishable, the
convergence seems a bit slower in the left tail of smaller
than typical components. This behavior is very similar to
the behavior of the sizes of the connected component [24]
and the 2-core [25]. This means that, the large deviation
principle seems to hold for this distribution.

Let us now take a look at the BA model. First, we will
just compare the mean size of the biconnected compo-
nent 〈S2〉, which we measured on the BA model similar to
the extrapolation in Figure 4 (300 ≤ N ≤ 1000), resulting
in
〈
SBA

2

〉
≈ 0.4982(4) for large values of N . In compari-

son to the analytical value
〈
SER

2

〉
= 0.6811 . . . for large

N [18] for the ER graph with the same mean degree
〈k〉 = 2.6, we observe that the connectedness and robust-
ness against random failures of the BA have to be paid
with a decreased robustness against worst case failures,
which is a phenomenon observed before [16]. To check
whether this effect is caused by the degree distribution or
the correlations, we look at the CM with a similar degree
distribution, namely a Pareto distribution p(k) = 2k0k

−3

with the same exponent as for the BA model and with
a tunable minimum k0, which we change to result in a
mean degree of 〈k〉 ≈ 2.6. Note that due to the discrete
nature of the degree distribution this does not result in
a perfect power law, in particular p (bk0c) is lower than
for a perfect power law, but it should be close enough
for our purposes. Here, we observe

〈
SCM

2

〉
≈ 0.6650(6).

This is slightly lower than the value for ER. This small
difference between the ER and CM model is also visible
when looking at the typical region of the distribution of
S2 as shown in Figure 8. This indicates that hubs are a
cause to destabilize a network against worst-case failures,

Fig. 8. Distribution PN (S2) of the size of the giant bicon-
nected component in the BA model with a mean degree of
〈k〉 = 2.6 and a power-law degree distribution pk ∼ k−3 in
comparison to the CM with approximately the same mean
degree and the same exponent governing the power-law degree
distribution and the ER model with the same mean degree.
Apparently the BA has a far smaller biconnected component
than the other two, but is connected. Samples were taken for
graphs of size N = 500.

but considerably a smaller cause than for BA, indicat-
ing that the correlations and the forced connectedness of
BA graphs lead to less redundancy in the network. Thus,
since the behavior of CM and ER is quite similar, and
because of the algorithmic complexity we encounter for
the CM model, as mentioned above, we proceed with the
large-deviation behavior of the BA model.

The empirical rate function of the largest biconnected
component of the BA ensemble at m = 1.3, i.e., a mean
degree of 〈k〉 = 2.6, is shown in Figure 9. The empir-
ical rate function and therefore the distribution does
look qualitatively similar to the c = 2 case of the ER
ensemble (cf. Fig. 7). The dip around S2 ≈ 0.2 is more
pronounced leading to a more severe discontinuity in the
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Fig. 9. Empirical rate function ΦN (S2) for multiple graph
sizes N of the BA graph ensemble with m = 1.3. A convergence
toward an asymptotic form for large values of N is visible.
For comparison also the empirical rate function ΦN (S2) char-
acterizing the distribution of the 2-core is shown. It deviates
qualitatively in the far left tail.

simulated finite temperature ensemble necessitating the
use of Wang–Landau sampling. The main qualitative dif-
ference of the behavior of the two distributions is visible
in the small sizes of the largest biconnected components
S2, where the empirical rate functions cross each other,
hinting at some kind of finite size effect suppressing very
small biconnected components in small graphs.

In comparison with the empirical rate function of the
size of the 2-core S2-core, also shown in Figure 9, their
difference in the region of very small bicomponents respec-
tively 2-cores, which was already observable in ER, is very
strong in the BA ensemble. Despite those two observables
being almost indistinguishable in the main region, they
show strongly different behavior in their overall shape, i.e.,
the distribution of the 2-core seems convex over the region
we obtained statistics for. Note, however, that in contrast
to the ER or even CM with the same degree distribution,
we do not expect the two distributions to be indistinguish-
able in the N →∞ limit. While the argumentation for the
ER needed the prerequisite of independent edges, the BA
shows strong correlations, e.g., cliques of 3 nodes occur
more often than in the ER or a CM with the same degree
distribution. As numerical evidence that the two distri-
butions do not become identical in the N → ∞ limit,
observe in Figure 9 that while the 2-core is almost con-
verged already, the left tail of ΦN (S2) tends away with
increasing graph sizes N . Thus, for infinite graph size, the
difference between S2 and S2-core will remain strong and
extensive in the left tail.

4 Conclusions

The biconnected component is a fundamental observ-
able of any graph related to its robustness. In general,
we identified competing properties, which influence the
robustness of networks, e.g., while the specific growth pro-
cess for BA graphs leads to a large connected component,
it also leads to a smaller biconnected component. Tests

on the CM show that the degree distribution has an influ-
ence on the size of the biconnected component, but the
construction rules of BA graphs have a larger impact.
This supports that networks originating from preferential
attachment processes might be particularly susceptible
to targeted attacks or worst-case failures as compared
to networks following the same degree distribution but
exhibiting independently drawn edges.

On a more fundamental level, the distribution of its
size has not been studied before, to our knowledge. We
used sophisticated sampling methods to obtain the distri-
butions of the size of the largest biconnected component
S2, for multiple ER graph ensembles and a modified BA
graph ensemble, over a large part of their support. For
the ER ensemble, looking into the large deviation tails of
this distribution shows qualitative differences between the
size of the 2-core and the biconnected component, which
are otherwise not well observable and which we expect
to vanish for large systems. Even more interesting is the
case for the BA ensemble where the overall shape of the
distributions seems to differ also for large systems. While
the 2-core distribution seems convex, the distribution of
the biconnected component shows a “shoulder”. These
qualitative differences, however, are only apparent below
probabilities of 10−20 and are therefore unobservable using
conventional methods.

Further, the empirical rate functions are already for the
small sizes that we simulated very close to each other hint-
ing at a very fast convergence to the limiting form. Thus,
our results indicate that the large deviation principle holds
for the numerically obtained distributions. This “well-
behaving” of our numerical results may make it promising
to address the distribution of the biconnected component
by analytical means, which has not been done so far to our
knowledge. Furthermore, it would be interesting to study
other network ensembles, which are even more relevant for
modeling robustness properties, e.g., two-dimensional net-
works modeling power grids [8] and other transportation
networks.
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B. Technical Details

B.1. Gluing the Single Distributions
This section describes the technical details of the procedure to transform the single
corrected histograms at different temperatures into one continuous distribution. This
is an extension to Section 2.2.4.

Given two overlapping distributions PΘi−1 and PΘi the ratio of their free parameters
ZΘi−1/ZΘi , or formulated in logarithms lnZΘi−1 − lnZΘi , is obtained by enforcing
equality over the overlap (see also Equation (2.30)).

ZΘi−1PΘi−1(S)eS/Θi−1 = ZΘiPΘi(S)eS/Θi , (B.1)

For simplicity, let ri = ln
(
PΘi(S)eS/Θi

)
, which leads to

lnZΘi−1 − lnZΘi = ri − ri−1. (B.2)

Since the data we collect is subject to sampling errors and the overlap should be
larger than a single bin, the equality can not be enforced strictly. Instead we minimize
the difference while giving more weight1 to samples with a smaller statistical error.
Therefore we use the intuitive way2 of weighting every bin j of histogram i with the
number of samples nij . Since we calculate the difference of two bins, we take the
conservative choice to weight the difference with the weight of the bin having fewer
samples. Thus the estimate for the ratio is

lnZΘi−1 − lnZΘi = 1∑
j min

{
ni−1
j , nij

}∑
j

min
{
ni−1
j , nij

}
(ri(Sj)− ri−1(Sj)) . (B.3)

If two overlapping parts cannot be smoothly merged, it is often a hint that the equi-
librium was not reached. At this stage one could introduce a formal criterion, for
example if the merge leads for some fraction of data points in the overlap from the
simulation at Θi to deviate more than, say, three times their standard deviation from
the data points in the same bin of simulation Θi−1. In this case longer simulations
and a more careful estimation of the equilibration time usually lead to better results.
However, in the publications of this thesis equilibration times were usually very short,

1Note that Article A.2 does not utilize the weighting that is introduced in this section. Though, the
unweighted variant will not lead to systematical errors and since the overlaps consist typically of
many bins with good statistics and few with bad statistics, the results are very similar.

2and according to Reference [19, p. 219 ff] the “standard way”. Note however that there are also
different approaches, e.g., based on iterative optimization methods [168, p. 16 ff].
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such that detection of not equilibrated simulations did not pose any problems. As
soon as all ratios of adjacent “temperatures” are obtained, the single distributions
are shifted accordingly. The unnormalized distribution P̃ (Sj) over the whole covered
range is then obtained by a weighted average over all partial, corrected and shifted,
but unnormalized distributions. Also this step is performed on the logarithms of the
collected data, i.e., the averaging is again a geometric mean

ln P̃ (Sj) = ln (P (Sj)Z1) = 1∑
i n

i
j

∑
i

nij lnPΘi(Sj) + Sj/Θi +
i∑

k=1
lnZΘk . (B.4)

The absolute value of the normalization constants, e.g., the first, Z1 can be obtained
by using that

∫∞
−∞ P (S) dS = 1. We can thus obtain Z1 numerically by performing an

integration, e.g., with the trapezoidal rule for equal-width bins

1
Z1

= b− a
2N

N∑
k=1

[
P̃ (Sk−1) + P̃ (Sk)

]
, (B.5)

where a and b are the lowest and highest bin positions, N the number of bins and Sk
the position of the k-th bin. As a technicality, we subtract the maximum of ln P̃ (Sj)
before performing the exponentiation to avoid difficulties with the numerical precision
of our datatypes.

B.2. Further Convex Hull Algorithms
This section will introduce an heuristic to reduce the run time of any exact algorithm
and two further exact algorithms for the evaluation of the convex hull, which were
candidates for the simulation program. After they are introduced in Appendices B.2.1
to B.2.3, the relative performance of all considered algorithms is shortly analyzed in
Appendix B.2.4, which is the basis of the decision which algorithm to use for our
studies.

B.2.1. Akl-Toussaint Elimination Heuristic

The Akl-Toussaint heuristic [169] is a fast way to discard points which can not be part
of the convex hull and can be used to preprocess the point set before applying one of
the exact algorithms. For brevity sake, only the d = 2 special case is explained as the
generalization to higher dimensions is straight forward. Since every point inside the
convex hull of a subset of the points, is also in the convex hull of all points, one does
not need to consider these points during the calculation of the actual convex hull.
The easiest way to create a polygon which encloses many points, is to choose the 4

points with maximum, respectively minimum values in x and y direction as shown in
Figure B.1(a). In fact, Reference [170] proposes that it is most efficient to choose 4
additional points: the maximum and minimum of x + y and x − y. In Figure B.1(b)
the improvement is visualized with an example. Usually a considerable amount of
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(a) Points discarded by a quadrilateral. (b) Points discarded by an octagon.

Figure B.1.: Example for the Akl-Toussaint elimination heuristic. (a) The simple method
with 4 extreme points spanning a quadrilateral. (b) The variation using 8 points (but only 7
distinct in this example) to span a polygon.

points is inside this polygon and can thus be discarded. Since the operation of testing
whether a point is inside a polygon (cf. Section 3.3.2) is quite cheap, this simple O(n)
technique often leads to considerable speedups, especially for large point sets.

While this method can easily be extended to higher dimensions, it is less efficient
for higher dimensions. Also note, that the Quickhull algorithm implicitly performs
this heuristic, but with a triangle in d = 2 and a tetrahedron in d = 3, thus no large
improvements in combination with the Quickhull are to be expected.

B.2.2. Jarvis’ March / Gift Wrapping
Jarvis’ march [171] is an output dependent convex hull algorithm, which means that
its time complexity in two dimensions O(nh) depends on the number of points that
are part of the convex hull h. In the worst case, e.g., points on a circle, all points are
part of the convex hull and therefore the complexity would be O(n2).

The main idea is to start at one point known to be a vertex of the convex hull, e.g.,
the point with minimum x-coordinate, and turning a hyperplane around this point
until it hits d − 1 additional points, which become part of the hull. This is repeated
for every vertex hit by the facet and not already part of the hull. Since this is basically
the same method humans use to wrap gifts, it is also known as Gift Wrapping.

For an efficient implementation, here for the example in d = 2, it can be interpreted
as maximizing the angle between the last found facet (pi−1,pi) and any point q′, i.e.,

q = arg max
q′

{
](pi−1,pi, q

′)
}
.

The next facet is then (pi, q) and the process is iterated until the start is reached, i.e.,
q = p0. Since maximizing this angle is equivalent to finding the point q leftmost of
(pi−1,pi), no angles need to be actually calculated and thus no expensive trigonometric
functions need to be evaluated.
In two dimensions this can be implemented by starting with the left-most point p0,

and searching for a point p1 such that there is no point left of the line (p0,p1), i.e., all
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pi−1

pi

q"
q'

pi−1

pi

q"

q'

pi−1

pi

q

Figure B.2.: Three steps of Jarvis’ March algorithm. If a point q′′ (red) is found left of the
line from pi to the current candidate q′ (green), it becomes the new candidate. After testing
every point, the one maximizing the angle, q, is added to the hull.

triplets of the form (p0, q
′,p1) for all other points q′ are counter-clockwise. This p1 is

part of the hull. This scheme is repeated with the triple (pi−1, q,pi), until pi = p0. At
this point the polygon with vertices {pi} is the convex hull.3 Note that for every of the
h points of the hull n − 2 points need to be checked, resulting in the aforementioned
O(nh) complexity.

B.2.3. Chan’s Algorithm

Chan’s algorithm [172] is an optimal algorithm for the construction of convex hulls, i.e.,
an algorithm reaching the theoretical lower bound O(n log h) in d = 2 and d = 3, where
n is the number of points and h is the number of points in the resulting hull. Note that
ten years prior an algorithm with the same complexity was already presented [173]
based on a different, more difficult to implement idea. Here Chan’s algorithm is
presented, since it is a nice combination of two above introduced algorithms, despite
not being used in any study of this thesis. While a version exists for d = 3 dimensions,
we will limit this description to the d = 2 case.
Its basic idea is to split, in a divide-and-conquer spirit, the point set in k = dn/me

subsets each of size less or equal m. The sets and their convex hulls, the sub-hulls,
may overlap. The sub-hulls are calculated using k times an O(m logm) approach like
Andrew’s monotone chain. Afterwards the sub-hulls are combined with the output
dependent Jarvis’ march into the global convex hull of all points. The synergy of
this split approach comes from the fact that Jarvis’ march needs to find the point q
maximizing the angle formed with the previous facet of the convex hull ](pi−1,pi, q).
While in the pure Jarvis’ march O(n) points need to be tested, here, we can get away
with less work. The idea, without going into technical details, is that instead of testing
every point of each sub-hull we just need to find the point q of each sub-hull such that
the line connecting pi and q is a tangent left of the sub-hull. The tangent points of
the sub-hulls are the only candidates that need to be tested, since they are left of all
other points of the corresponding sub-hull. The tangents are visualized in the example

3An animation of this process is available at https://data.schawe.me/jarvis.gif.

172

https://data.schawe.me/jarvis.gif


B.2. Further Convex Hull Algorithms

Figure B.3. The trick leading to the reduced work is that finding the tangent point
can be done in time O(logm) for each of the k sub-hulls. This is achieved with an
algorithm similar to binary search.4 Since the hull of the full problem has h points, this
is iterated h times.5 All in all this results in a time complexity of O((n+ kh) logm).

(a) (b) (c)

(d) (e) (f)

Figure B.3.: Visualization of Chan’s algorithm starting with m = 3. In (a) to (c) the k
candidates and the corresponding tangents are shown in green and the candidate maximizing
the angle in red. After m = 3 iterations the algorithm is aborted, m is increased to m = 32 = 9
and the new sub-hulls are calculated. For this iteration again three steps are visualized in (d)
to (f).

To achieve the optimal O(n log h) run time it is necessary that m is of the order of
h. Since h, the number of vertices of the convex hull, is usually not known beforehand,
the algorithm is iterated with super-exponentially growing m. In every iteration, only
m steps in the Jarvis’ phase of the algorithm are performed. Note that if m is growing
too slowly, the run time could degrade to O

(
n2). If the solution is not found, m is

squared and the algorithm is started from scratch.
Despite its superior complexity, it is for the relatively small point sets used in this

study not necessarily the fastest. A basic, not fine tuned, implementation is con-
sistently slower than the more simple algorithms as shown in Appendix B.2.4 and
Figure B.4. Therefore it was not used for any of the studies constituting this thesis.

4For a more technical look consider References [89, 174].
5An animation of this process is available at https://data.schawe.me/chan.gif.
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B.2.4. Convex Hull Algorithm Implementation for this Study

To decide for an algorithm for our practical study, we should not just select the al-
gorithm with the best time complexity, but have to keep in mind that for this study
mainly small point sets of less than n = 104 are considered, such that the algorithm
with the best asymptotic time complexity is not necessarily the fastest for this appli-
cation. Also we need to preserve the point set for the Markov chain, such that some
micro optimizations, like in-place sorting, are not applicable.

101
102
103
104
105
106
107
108
109

101 102 103 104 105 106

t/
n
s

T

Andrew’s
Jarvis’

qhull
Chan

Andrew’s + Akl
Jarvis’ + Akl

qhull + Akl

Figure B.4.: Comparison of different algorithms to obtain the convex hull for d = 2. Apparently
Andrew’s Monotone Chain enhanced by Akl’s heuristic is the fasted tested implementation,
especially in the n . 2048 range where the simulations will be performed. The point set was
constructed by a Gaussian random walk.

To decide for an algorithm, comprehensive benchmarks were performed as shown in
Figure B.4. For this study, the implementation of Andrew’s Monotone Chain enhanced
by Akl’s heuristic performs best for d = 2. For d = 3 this algorithm does not work
anymore and the Quickhull implementation qhull without Akl’s heuristic performs
best and was used for all d > 2. We have no explanation for the anomaly of Chan’s
algorithm at T = 128, the initial value of m is chosen as m = 100, a choice of m = 10
leads to twice the runtime. The bad runtime of qhull for very small instances is
probably caused by library call overhead.

Note that technical details, e.g., for handling floating point precision difficulties or
degeneracy, are not mentioned in this thesis but played a role in the decision for the
well tested qhull library instead of an own implementation in higher dimensions.

B.3. Generation of Random Numbers
For every model which is studied as part of this thesis, we need random numbers for
its simulation. In fact we only need uniform random numbers and can generate all
other distributions from them. Since the generation of good uniform random numbers
is a field too wide for this thesis, we will just use a well studied generator without
explaining its background. Therefore all random numbers used in the context of
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this thesis are created using the Mersenne Twister [30]. For a nice introduction into
random numbers, Donald E. Knuths “The Art of Computer Programming, Volume 2:
Seminumerical Algorithms” [97] is recommended.

Assuming we have a source of good uniform random numbers, we will explore quickly
how we can use the uniform random numbers to construct random numbers following
different distributions. This will not be an exhaustive review, we will only handle the
generation of random numbers distributed according to the distributions we studied
in Article A.4.

Exponential For distributions, whose cumulative distribution function can be in-
verted, it is possible to apply the inversion method [175]. So, given a uniform random
number η ∈ [0, 1) and the probability density function of the exponential distribution
p(ε) = λe−λε with ε ≥ 0, we can generate a random number distributed according to
p(ε) by inverting η =

∫ ε
0 dε p(ε) = 1 − e−λε. This results here in ε = − ln(1 − η)/λ.

Note that the random variables η and 1− η are indistinguishable, such that this form
simplifies to ε = − ln(η)/λ.

Gaussian Gaussian random numbers are probably the most used random numbers
after uniformly distributed ones. The standard way to generate them is the Box-Muller
method. It takes two uniform random numbers y1, y2 and transforms them into two
normal random numbers x1, x2 with

x1 =
√
−2 ln(y1) cos(2πy2), x2 =

√
−2 ln(y1) sin(2πy2). (B.6)

The main idea behind the derivation of this method is a mapping to a bivariate Gaus-
sian distribution in polar coordinates, e.g., x = R cos(ϕ). The probability density in
the radial direction is the exponential distribution q(R) = e−R2/2. Random numbers
according to this exponential distribution can be created using the inversion method
introduced above, resulting in the first terms of Equation (B.6). The polar angle ϕ is
uniformly distributed ϕ ∈ [0, 2π), which is trivial to obtain using a uniform random
number, resulting in the arguments of the trigonometric functions.
The generated Gaussian random numbers follow a standard Gaussian and can be

transformed into arbitrary Gaussians through shifts by the desired mean and scaling
with the desired standard deviation.
Note that the operations ln, sin, cos and

√
· are computationally expensive. There

is a different formulation of the Box-Muller method avoiding the trigonometric func-
tions [176] or the Ziggurat method, which is based on the standard rejection method [175]
and said to be even more efficient [177]. Though both of which might need many uni-
formly random numbers to generate one Gaussian random number. Therefore, for
our application to construct a Markov chain, it is easier to always store two uni-
form random numbers per Gaussian ε instead of an undefined number of uniform
random numbers, such that we use the Box-Muller method. This can be seen as a
speed/convenience trade-off.
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Pareto The Pareto distribution is only defined for numbers larger than the parameter
εmin > 0 and its distribution function is p(ε) = (β − 1) εβ−1

min ε
−β, with the parameter β,

i.e., it has the form of a power law with the exponent β. This distribution lends itself
nicely to the inversion method. After integration, we arrive at η = 1 −

(
εminε

−1)β−1

leading to ε = εmin(1 − η)−1/(β−1), to which the same simplification as for the expo-
nential distribution can be applied leading to ε = εminη

−1/(β−1).

Erlang The distribution p(ε) = εe−ε, ε ≥ 0 is a special case of the Erlang distribution.
The main motivation to examine it is that it shows a different behavior for small values
of ε, in particular it behaves like p(ε) ∼ εα with the exponent α = 1, while for all
above distributions α = 0. Why this α is important for our application, is explained
in Section 4.4.
Again, we can apply the standard inversion method as above to this distribution.

Integration leads to

η =
∫ ε

0
dε ε exp−ε = 1− (1 + ε)e−ε.

On the first glance this might look non-invertable, but remembering6 the definition of
the Lambert-W function (cf. Reference [178])

z = W (zez) ,

i.e., the Lambert-W function is the inverse of f(z) = zez, leads to an inversion. Since
f(z) = zez is not strictly monotone, the inversion is not unique. In this case we need
the so called −1-branch W−1 of the Lambert-W function. With this we arrive at

ε = −W−1

(
η − 1

e

)
.

So given a uniform random number η, we can construct one distributed according to
the above distribution by evaluation of the −1-branch of the Lambert-W function.
For this task most scientific libraries, like the GNU Scientific Library, offer a function.

B.4. Biconnected Components

Here we will show the algorithm to find the biconnected components described in
Section 6.4 in more detail with an illustrated example. The current node, i.e., the
node on top of the stack, which is the only node whose annotations are changed
in that step, is marked with a thick border. Edges traversed during the depth-first
search, constituting the depth-first tree are also marked thick. The full sequence of
states leading to the state shown in the main part of this thesis Figure 6.3 is shown
in Figure B.5.

6or being remembered by Mathematica
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Figure B.5.: Example of Hopcroft and Tarjan’s algortihm to find the biconnected components.
Each type of step is described in the text. In each panel the current annotated graph is shown
and below the current stack of the depth-first search.
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Starting at node 1 in Figure B.5(a), the depth-first search proceeds to 2, which is
at depth 1, since we have no information gathered yet, we initialize the lowpoint with
the depth. The same process is iterated until we do not encounter any unmarked
neighbors anymore in Figure B.5(d). At this point, before popping node 4 from the
stack, we assign its lowpoint as the minimum of the depths of the neighboring nodes,
excluding the node we came from. The same rule leads in Figure B.5(e) to a lowpoint
of 0 for node 3, so we can clearly see that the small lowpoint propagates through
circles. In Figure B.5(f) node 5 is assigned with depth 3, which is the distance in the
depth-first tree to the root node 1. Fast forward to Figure B.5(j), we backtrack to
node 5 and notice, before popping it from the stack, that the lowpoint of at least one
of its children, i.e., of node 6, is equal to the depth of node 5, such that we mark node
5 as an articulation node. Similarly we notice in Figure B.5(k), before popping node 3
from the stack, that the lowpoint of its child node 5 is greater than the depth of node
3, such that we mark it as an articulation point. This results in the annotated graph
of Figure B.5 and the corresponding bicomponents.

In fact, we can use a further auxiliary stack to store edges used for marking the
neighbors. When identifying an articulation node and every time we backtrack to a
known articulation point, we pop all edges until the edge over which we backtracked
to the articulation node. The popped edges define a biconnected component.
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