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1. Introduction

According to Ref. [1] Karl Menger was the first mathematician to publish studies
on the Travelling Salesperson problem (TSP) around the year 1930. It seems
appropriate to let him define the TSP, which he called Botenproblem [2, p. 23].

We denote by messenger problem (since in practice this question should
be solved by each postman, anyway also by many travelers) the task
to find, for finitely many points whose pairwise distances are known,
the shortest route connecting the points. Of course, this problem is
solvable by finitely many trials. Rules which would push the number
of trials below the number of permutations of the given points, are not
known. The rule that one first should go from the starting point to the
closest point, then to the point closest to this, etc., in general does not
yield the shortest route.1

In the first sentence Menger noted that the TSP is of great practical relevance. A
good tour optimization can not only save money when used for vehicle routing,
but also circuit boards can be produced faster and therefore cheaper if the drill
uses the shortest way to drill the holes to contact back and front of the board, and
there are many more real world applications [3]. It should be noted that the TSP
has also a history as a testbed for optimization heuristics, e.g. the effectiveness
of simulated annealing [4], taboo search [5] and ant colony algorithms [6] were
shown early on examples of TSP instances. The TSP is suited for this purpose
because its fame led to a rich collection of tours with their optimal solutions as a
benchmark, notably the TSPLIB2, to estimate the quality of the tested heuristic
and – as the last sentence of the cite says – no effective algorithm is known to
solve a TSP to optimality. In fact it is proven that the TSP is NP-hard3 which
means that there is no easy way to solve the TSP yet and it is reasonable to think
that it will never be the case. This is connected to the famous P-NP problem.
Its solution would determine this uncertainty But for practical needs there exist
good heuristics [6, 8, 9] and for the Euclidean case (which is still NP-hard [10]),
i.e. the pairwise distances are the Euclidean distances, even a polynomial-time
approximation scheme (PTAS) [11]. Also many polynomial-time algorithms for
special corner cases are known [12].

The complexity class NP-hard is of great practical relevance since a wide range
of important optimization problems belong to it, including spin glass ground-state

1Translated from the German original by Alexander Schrijver in [1].
2TSPLIB is a collection of real world, typically difficult TSP problems and their optimal solu-

tions [7].
3See Section 2.
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calculations [13] which are relevant to condensed matter physics, integer program-
ming [14] which is important to operations research and as already mentioned the
TSP which needs to be optimized in every logistics context.

To gather insight in computational “hardness”, systems from the class NP-hard
are studied empirically. Interestingly NP-complete4 problems, which are a subset
of NP-hard, often show some kind of easy-hard phase transition regarding the
typical behavior on suitably parameterized ensembles of random instances. Some
of the classical NP-complete problems [14] from theoretical computer science were
examined with respect to phase transitions with methods of statistical mechanics
of unordered systems in [15–20] and many more. Especially, in Ref. [21] the TSP
decision problem, if there exists a tour shorter than a given length, is under scrutiny
and shows a phase transition.

This thesis searches for a phase transition in the TSP when changing the configu-
rations of the cities the salesperson has to visit. To force some kind of transition
the configurations start at an easy to solve instance, e.g. cities arranged on a circle.
Each city is then displaced by a random distance dependent on a control param-
eter σ. A main point of reference for this thesis is Ref. [22], which examines the
NP-hard Vertex Cover (VC) optimization problem on Erdős-Rényi graphs, which
can be tuned with the connectivity, also known as edge density, parameter c. There
the transition point obtained by analytic means [18] can also be observed when
examining whether the linear programming (LP) has a valid solution or not. This
will be the vector of attack to find a phase transition in this thesis, and allows to
look at relatively large TSP realizations.

This thesis starts with the short introduction of complexity classes in Section 2,
the Travelling Salesperson problem and the ensemble of realizations under scrutiny
in this thesis in Section 3, linear programming in Section 4 and the methods of
statistical mechanics of unordered systems in Section 5.

The main part Section 6 shows the results of the computations. Section 6.2 shows
the occurrence of an phase transition from “easily solvable by LP” to “not solvable
by LP” and Section 6.3 shows properties of optimal tours, which show some special
behavior at the phase transition. Section 6.4 shows that this phase transition
exhibits universality as expected. In Section 6.5 a look at ground-state excitations
is taken and finally Section 6.6 reproduces and extends some results from earlier
work before Sections 7 and 8 give a conclusion of this thesis and an outlook to
possible ways to extend it.

4See Section 2.
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2. Complexity Classes

The introduction mentioned that phase transitions are observable in many prob-
lems of the NP-complete complexity class. Since there are many misconceptions
about complexity classes among – but not limited to – physicists, it seems appro-
priate to give a short introduction to complexity classes. Since it is far beyond the
scope of this thesis to introduce formal details about Turing machines, only some
non-rigorous, phenomenological definitions of some complexity classes are given,
which should suffice for the understanding of this thesis5.

First a few fundamental definitions of complexity are needed. The most common
way to compare different algorithms is the comparison of the time complexity,
which basically counts the number of fundamental operations of the given algo-
rithms. It is given as a function of the input size n for asymptotic big inputs
with a Landau symbol, i.e. disregarding everything but the highest order term of
the function – also commonly referred to as big-Oh-notation. For example, in the
worst case a naive Bubble Sort6 of n values needs O (n2) comparisons, whereas
Merge Sort needs only O (n log n). Therefore Merge Sort is – at least for large n
– the superior algorithm. If the time complexity is bounded by a polynomial, like
both examples, the algorithm has a polynomial-time complexity.

If a decision problem, i.e. a problem which solution is either“yes”or“no”, is solvable
in polynomial time, it belongs to the P class, which stands for polynomial time.
If there is a way to verify the solution of a decision problem in polynomial time
given a certificate of the solution, it is in NP, which stands for non-deterministic
polynomial time. For example the problem to decide whether a number is com-
posite, i.e. not prime, is in NP7 because given the prime factors as the certificate
one can multiply them in polynomial time to verify that the resulting number is
indeed composite. So clearly

P ⊂ NP

holds, because if a problem is solvable in polynomial time, one can verify the
solution in polynomial time by solving it again. Whether it is a proper subset or
P = NP is a famous open problem called P-NP problem, e.g. one of the Millenium
Problems [27]. Though in the following it is assumed that P is a proper subset.

A subset of NP is NP-complete, which consists of decision problems to which

5For further reading Ref. [23] or similar books are recommended.
6This example is chosen because sorting seems to be the prime example for complexity analysis

in every undergrad textbook. The definiton of Bubble Sort and Merge Sort will not be given
here, and the interested reader is referred to any textbook, e.g. Ref. [24] or for even more in
depth analysis Ref. [25].

7Note that it is also in P because primality tests can be performed in polynomial time [26].
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every other problem in NP can be reduced in polynomial time, especially all
NP-complete problems can be reduced to each other. Therefore they are often
referred to the hardest problems in NP, since if one of them can be solved in
polynomial time, all of NP can be solved in polynomial time. NP-complete has
as famous members as Boolean satisfiability, vertex cover, integer programming
(IP) for binary variables without optimization and the decision versions of the
TSP – is there a tour shorter than a given length – as proven in Ref. [14].

The last class with relevance in this thesis is NP-hard, which consists of not neces-
sarily decision problems to which any NP problem can be reduced in polynomial
time and therefore

NP-complete = NP
⋂

NP-hard.

For example, the optimization versions of the vertex cover or the TSP, which solu-
tions also answer the corresponding decision problems, which are in NP-complete.
But also other practically relevant problems like ground states of spin glasses [13]
or IP belong to NP-hard. Note that the solution of an NP-hard problem can only
be checked for feasibility but not for optimality in polynomial time. The relations
of these complexity classes are also sketched in Figure 2.1 for clarity.

NP NP-hardP

N
P
-c
om

p
le
te

Figure 2.1: Venn diagram to clarify the relationships between the complexity classes that
are important in the context of this thesis.

3. The Travelling Salesperson Problem

Instead of the historical formulation, a more formal definition of the TSP will be
given in the context of graph theory. This has the advantage that short and precise
terms can be used.

For a complete, undirected graph G(V,E) with a given set of vertices
V and given edge weights cij find the minimum weight Hamiltonian
cycle, i.e. a closed tour visiting all vertices exactly once.

12



Each vertex corresponds to a city and the edge weights correspond to the pairwise
distances. The length of the tour is the weight of the Hamiltonian cycle.

If the distance matrix cij is symmetric, i.e. the way A → B is as long as B → A
thus cAB = cBA, it is called symmetric TSP. If the distances are derived from any
metric and thence the triangle inequality holds, i.e. a tour A→ B → C is always
longer or equal A→ C thus cAB + cBC ≥ cAC , it is called metric TSP.

3.1. Introducing the Fuzzy Circle Ensemble

In this thesis a new random ensemble of city configurations, i.e. distance matrices
cij, is introduced. I name it Fuzzy Circle Ensemble (FCE), which loosly visualizes
the realizations. The instances of this ensemble are Euclidean TSP, i.e. cities have
coordinates on a plane (respectively in space for dimensions higher than two) and
the edge weights are the Euclidean distances between them. This has the advantage
that realizations are easy to visualize and comprehend. The FCE exhibits one
parameter σ to tune the geometric properties of the cities. To construct realizations
of the FCE, first the cities are arranged in a well defined start configuration and
then randomly displaced depending on the parameter σ.

r

φ

Figure 3.1: Definition of the displacement. The cities are displaced by a random distance
r ∈ U [0, σ] in a random direction φ ∈ U [0, 2π). Both random variables are independent
and uniformly distributed.

The start configuration is chosen as N cities lying on a circle like Figure 3.2(a),
because that seems to be the easiest configuration to spot the minimum length
tour, as even the most simple heuristics, e.g. nearest neighbor, which is the heuristic
proposed by Karl Menger cited in the introduction, finds the optimal tour. Further
some polynomial-time solution methods work, since the circle fulfills the necklace
condition [28] and all points are part of the convex hull [29].8

The radius of the circle is chosen as R = N
2π , such that the inter-city distance is

approximately 1 and exactly 1 for N →∞. This establishes two length scales, the
scale of the circle and the scale of the distance to the neighbor city.

8Of course these properties are also fulfilled by, e.g. a rectangle.
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For each city a displacement is determined by two independent random variables
from an uniform distribution. φ ∈ U [0, 2π) is treated as a displacement angle and
r ∈ U [0, σ] as a radius. This is sketched in Figure 3.1 and shown with an example
in Figures 3.2(a) and 3.2(b).

(a) σ = 0 (b) σ = 12 (c) optimized

Figure 3.2: Configurations with N = 180 cities (a) before and (b) after the displacement
step. (c) is the optimal tour of (b).

Though the choices of the start configuration and the modus of displacement are
arbitrary, they should show no qualitative differences to, say, a rectangle as the
starting configuration, as will be explained later in Section 5.1 and shown in Sec-
tion 6.4.1, where instead of the uniformly distributed random variables r and φ,
normal distributed ∆x and ∆y are used. Also instead of open boundary conditions,
i.e. an infinite plane, periodic boundary conditions, i.e. a torus, could be chosen,
which does not change the results fundamentally (which was indeed briefly tested,
but will not be subject of this thesis).

To get a better understanding what the construction rules mean for the configu-
rations and the optimal tours, Figure 3.3 shows optimal solutions for six different
values of σ calculated by Concorde9. The examples have N = 1024 cities hence a
radius of R = N

2π ≈ 163. Therefore Figure 3.3(f) with a maximal displacement of
σ = 160 closes the “hole” in the middle. The most fundamental change happens
between Figures 3.3(a) and 3.3(b) where the solution changes from obvious to pos-
sibly difficult. The tours in Figures 3.3(c) to 3.3(f) seem not to be fundamentally
different from Figure 3.3(b). The expectation is therefore that the transition from
easy to hard – if it exists – happens in the range 0 < σ < 10� R for this example
with N = 1024, which suggests that the structure of the big circle and therefore

9Concorde is a state of the art solver for the TSP, free for academic use and open source.
http://www.math.uwaterloo.ca/tsp/concorde.html
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(a) σ = 0 (b) σ = 10 (c) σ = 20

(d) σ = 40 (e) σ = 80 (f) σ = 160

Figure 3.3: Evolution of a N = 1024 and R = N
2π ≈ 160 system with icreasing σ.

N is not important for this transition. Therefore the same values of σ will be
examined for every considered number of cities N .

15



4. Linear Programming Approach to the TSP

LP is a term for techniques used to solve optimization problems which minimize or
maximize a linear objective function with respect to restrictions formulated using
linear inequalities, called constraints. The most general formulation using the
coefficient vector c, the coefficient matrix A, the bound vector b and the variable
vector x is

maximize cTx

subject to Ax ≤ b.

Note that equalities and “≥” can also be expressed by this formulation e.g.

−ax1 ≤ −b⇔ ax1 ≥ b

ax1 ≤ b
ax1 ≥ b

}
⇔ ax1 = b

The constraints divide the solution space in feasible and infeasible regions. The
feasible region is always a convex polytope due to the linearity of the constraints.
An example for

x =
(
x1
x2

)
, c =

(
1
1

)
, A =

(
4
9 1
1 1

5

)
, b =

(
5

2.5

)

is sketched in Figure 4.1.
The solution lies always on the boundary, i.e. the sides, of the polytope. Because
the objective function is linear, it is sufficient to examine the corners, i.e. vertices,
of the polytope to find the optimum [30]. The most intuitive way to find the
optimum would be to start at one vertex and move from there to adjacent better
vertices until the optimum is obtained, because no adjacent vertex is better. Since
the polytope is convex, this algorithm can not be stuck in a local minimum. This
algorithm is called simplex algorithm. Because I did not implement one myself
for this thesis, I reference Ref. [30] for the reader interested in technical details,
e.g. how it can be assured that it does not get stuck in a cycle through equally
good vertices.

Although the simplex algorithm does not have a polynomial worst-case run time,
it is of great practical relevance, since the typical run time is not bad and it offers
warmstart capabilities [31] which are useful if many closely related problems need
to be solved, which is a common case as will be shown in Section 4.1. It should
further be noted, that there are other algorithms and that the ellipsoid algorithm
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9x1 + x2 ≤ 5
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1
5x2 ≤ 2.5

feasible region

Figure 4.1: Visualization of a LP. The hatched region is infeasible. All solutions which
maximize a linear objective function lie on the lines defined by 4

9x1 +x2 = 5, x1 + 1
5x2 =

2.5. In fact it is sufficient to examine the intersections, to find the maximum, which is
what the simplex algorithm does. The maximum of x1 + x2 is marked with a dot.

[30] and some interior-point algorithms [24] solve the same problem in polynomial
time, which is especially important for the complexity analysis. The careful reader
will now note, that the TSP which is NP-hard thus, if P 6= NP holds, can not be
solved by LP alone. The portion of the solution process which needs more than
polynomial run time will be introduced in Section 4.4.

One possible formulation of the symmetric TSP as a LP is given in Equations (4.1)
to (4.4) as first introduced by Ref. [32]. This formulation will be explained in
detail in the remainder of this section. To simplify the notations in this section,
the variables are identified xij ≡ xji due to the symmetry.

minimize
∑
i

∑
j<i

cijxij (4.1)

subject to xij ∈ {0, 1} (4.2)∑
j

xij = 2 ∀i ∈ V (4.3)

∑
i∈S,j /∈S

xij ≥ 2 ∀S ⊂ V, S 6= ∅, S 6= V (SEC) (4.4)

The idea is to take all possible connections between city i and j as the variables xij.
Thus x is the adjacency matrix of the tour. If cities i and j are directly connected
in the tour, the variable xij should be 1, else 0. Because the graph symbolizing the
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tour is undirected, the adjacency matrix is symmetric, i.e. xij = xji. The cyclic
tour (1, 2, 4, 3, 5) is represented by

xij =


· 1 0 0 1
1 · 0 1 0
0 0 · 1 1
0 1 1 · 0
1 0 1 0 ·

 .

Because it is not clear what a non-integer entry in an adjacency matrix means,
Equation (4.2) restricts xij to the integers 0 and 1. (Values greater than 1 are actu-
ally forbidden by the combination of constraints of type Equations (4.3) and (4.4),
but for clarity this bound is given separately.)

Since the TSP searches the minimum length tour, the objective function to mini-
mize Equation (4.1) calculates the tour length, with cij being the distance between
city i and j, i.e. cij = dist(i, j).

Obviously every city needs to be connected to two other cities, such that the sales-
person can enter and leave it. Formulated for the matrix representation, the sum
over the i-th row needs to be 2 as stated by the degree equations Equation (4.3).
Because of the symmetry also the sum over the i-th column needs to equal 2.
However, not only one single tour satisfies this constraint, but several not con-
nected loops, called subtours, do, too. An example is sketched in Figures 4.2(b)
and 4.2(c).

The subtour elimination constraints (SECs) Equation (4.4) suppress the subtours
by ensuring that for every non-empty, proper subset S ⊂ V of the cities a mini-
mum of two ways connect the cities in the subset i ∈ S with cities not in subset
j /∈ S. This introduces a new problem, as the “for all subsets” part hints at an ex-
ponentially increasing number of constraints for larger system sizes N . In fact not
all SECs are formulated in the beginning. The strategy to add them on demand
will be explained in Section 4.1. As an example for the way the SECs work, take
Figure 4.2(c) which violates the SEC with the set S = {A,B,C,D} because∑

i∈S,j /∈S
xij = 0 � 2.

As shown in Figure 4.2(b) the SECs also suppress other invalid configurations,
which can arise when disregarding the integer constraints Equation (4.2). In that
example the SEC for the set S = {A,B,C,D} is violated because∑

i∈S,j /∈S
xij = 1 � 2.
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(c) L = 4 + 2
√
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(d) L = 4 + 7
√

2 + 2
√

5 ≈ 18

Figure 4.2: Optimal solutions obeying subsets of the constraints, to be precise (a) is
without any constraints, (b) has only the degree constraints, (c) additionally the integer
constraints, (d) complies also with the SECs and is an optimal tour. The lengths L are
given with the distance AB = 2.
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But beware that the SECs can not suppress all non-integer solutions.

There are two other formulations equivalent to the SECs [32], which are very
similar to each other and are mentioned here just for completeness sake.∑

i<j∈S
xij ≤ |S| − 1 ∀S ⊂ V, S 6= ∅, S 6= V (4.5)

∑
i<j /∈S

xij ≤ N − |S| − 1 ∀S ⊂ V, S 6= ∅, S 6= V (4.6)

The idea behind Equation (4.5) is that the number of edges between the vertices
of a subset S – under the premise that the degree inequalities are satisfied – is
only equal to the number of nodes in this subset |S| if there is a loop. This can
easily be verified at Figure 4.2(c) with S = {A,B,C,D}∑

i,j∈S
xij = 4 � 3 = |S| − 1.

Also note that this relation is violated by the same S in Figure 4.2(b)∑
i,j∈S

xij = 3.5 � 3 = |S| − 1.

The second Equation (4.6) has the same idea supplemented by the fact that the
solution is a loop and needs therefore N edges. The examples how these constraints
are violated in Figures 4.2(b) and 4.2(c) are left as exercise for the reader.

The major problem of this formulation is the integer constraint Equation (4.2).
Since it is not linear, the LP mechanism can not handle it. Until a strategy to
mitigate this shortcoming is presented in Section 4.4, instead the IP is relaxed, by
ignoring the integer constraints Equation (4.2), i.e. replace it by

xij ∈ [0, 1]. (4.7)

The resulting LP problem is called LP relaxation. Since there are a few other
relaxations, generated by dropping other constraints or adding further inequalities,
under scrutiny in this thesis, this relaxation will be called SEC LP relaxation for
clarity. One can verify that the solution of any LP relaxation is always better or
equal than the solution with integer variables and thus is a lower bound to the
minimum tour length. If a solution of the SEC LP relaxation version has integral
xij, it is also a solution to the TSP.

For completeness it should be mentioned that the SECs are not the only way to
prevent subtours in the solution. An easy to implement alternative is the Miller-
Tucker-Zemlin formulation [33]. It only needs a polynomial amount of constraints,
but enforces the integrality constraint Equation (4.2) at an earlier point in the
solution process and is thus not suited for the kind of analysis this thesis provides.
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4.1. Cutting Planes

The idea behind cutting planes is to not add all constraints at the definition of
the problem but during the solution process. They are added in an iterative
way. First the relaxed problem without some class of constraints is solved, e.g. by
the simplex method, then a constraint is found that invalidates the region of the
solution space containing the current solution. This process is called separation and
the constraint is the cutting plane – or short cut. It is added to the LP relaxation
and the procedure is repeated. A famous example are Gomory Cuts [30] which
add constraints which ensure that all variables are integer after sufficiently many
iterations, but unfortunately need often too many iterations to be useful. An
example where cutting planes lead to the solution of a simple integer program is
shown in Figure 4.6.

To use the SECs as cutting planes, a SEC violated by the current solution needs
to be found. The separation of SECs will be explained in Section 4.2.

There do exist more cutting planes for the TSP, which can be added to the problem
to enforce the integrality constraints like Comb Constraints [34–36]. But there are
no polynomial-time algorithms known yet, to separate all of them, but only subsets
like simple comb inequalities [37, 38]. Nevertheless in more sophisticated solvers
like Concorde those advanced techniques are used, as stated by Ref. [39].

There are also generic cuts which can be used for most IP problems and are
often implemented in sophisticated solvers to reduce the solution space. Although
the CPLEX10 version used offers 10 different types of cuts, including fractional
Gomory, clique and zero-half cuts, none of them will be used here. They are clearly
inferior to SECs and using only SECs makes it possible to evaluate statistics of
the cuts, which would be diluted by generic cuts otherwise.

4.2. Separation of Subtour Elimination Constraints

If one divides the map on which the TSP lives into two parts, the SECs enforce
that connections with the summed value ≥ 2 have to cross the border between
those parts. If formulated in the context of graphs it becomes apparent how to
find violations of this rule. The global minimum cut11 of the corresponding graph

10CPLEX is a commercial LP and mixed integer programming (MIP) solver from IBM, which can
be used as a C++ library and is free for academic use. http://www-03.ibm.com/software/

products/en/ibmilogcpleoptistud/
11Though the names are deceptively similar, this may not be confused with the aforementioned

cutting planes.
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must be obtained. Once the minimum cut of the graph is found, the sum of the
weights of the cut edges, also called the weight of the cut, indicates whether a SEC
is violated. The two sets on either side of the cut indicate which SEC is violated.
If the value is ≥ 2 there are no SECs violated, else a cutting plane is added with
the violated SEC and the LP relaxation is solved again. Fortunately the minimum
cut problem is well studied and there exist a plethora polynomial-time algorithms
which can find he global minimum cut. In this study the Stör-Wagner algorithm
[40] explained in Section 4.2.1 is used, provided by the Boost Graph Library (BGL).

The special case of a minimum cut of 0, i.e. a graph with more than one connected
component, can be detected by a simple depth first search (DFS) [41] in time
O (|V |+ |E|) where |V | is the number of vertices and |E| the number of edges in
the graph.

To speed up the solution process, it is advantageous to find more than one violated
SEC in every iteration, since it may reduce the total number of needed iterations.
Therefore Karger’s algorithm [42] explained in Section 4.2.2 will be used to find
some random small cuts.

The logical conclusion of this line of thinking would be to find all minimum cuts
between all pairs of nodes. Therefore a Gomory-Hu-Tree [43] provided by the
Library for Efficient Modeling and Optimization in Networks (LEMON) was con-
sidered, but tests showed that this strategy added too many cuts slowing down
the solution process, therefore the Gomory-Hu-Tree is not constructed in the final
program. The details of the chosen implementation are explained in Section 4.2.3.

Note that because the separation needs just polynomial time, the solution of this
LP relaxation is therefore also possible in polynomial time using the ellipsoid algo-
rithm [44–46]. Also Appendix B shows numerical statistics of the number of cuts
used to generate the results of this study and shows that in fact only polynomial
many are needed in the simulations.

4.2.1. The Stör-Wagner Minimum Cut Algorithm

The Stör-Wagner algorithm [40] finds for an undirected edge-weighted graphG(V,E)
with non-negative weights the global minimum cut in time

O
(
|V ||E|+ |V |2 log |V |

)
without using the famous max-flow min-cut theorem. The idea is that either the
global minimum cut of G separates the nodes s and t, then the minimum s-t-cut
, i.e. the minimum cut which separates the vertices s and t in distinct sets, is the
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global minimum cut, or the global minimum cut of G is the global minimum cut
of G where s and t are merged into one vertex.

The main part is the so called minimum cut phase, which finds an arbitrary s-
t-min-cut , i.e. s and t are not predetermined, by a maximum-adjacency search.
For the maximum-adjacency search a set A with an arbitrary seed vertex a is
constructed. The vertex most tightly connected to A is added to A, i.e. the vertex
v0 /∈ A whose sum of the edge weights to vertices v ∈ A is maximal. This is
repeated until all but one vertex of G are in A, the last added vertex is called s
and the remaining t. Note that this does not alter the graph structure. The sum
of the weights of the edges incident to t is the minimum s-t-cut, called cut-of-the-
phase, which is stored. Now the vertices s and t are merged into one new vertex
u. The weights of the edges connecting u to the remainder of the graph are

w({u, i}) = w({s, i}) + w({t, i}) ∀i ∈ V \ {s, t}

This is repeated |V | times until all vertices are merged into one. The lightest
encountered cut-of-the-phase is the global minimum cut.

4.2.2. Karger’s Minimum Cut Algorithm

Karger’s algorithm [42] is a randomized algorithm that finds some small cut in
time

O
(
|E| log2 |V |

)
which is especially suited for this application, since there are only |E| = O (|V |)
edges in the graph because of the degree constraints. It works on undirected
multigraphs, i.e. a graph on which multiple edges between the same two vertices
are allowed, but no self loops. Also all edge weights need to be 1 – integer edge
weights can be incorporated by multiple edges.

For the application in this thesis also fractional edge weights are used, which will
invalidate the estimate of the probability to find the global minimum cut, which
is not important in the scope of this application.

It chooses a random edge e = {i, j} ∈ E and merges the two incident vertices i
and j discarding all edges between them but preserving all other. This is repeated
until only two vertices are left. The sum of the edges between them is the weight of
the small cut. Intuitively this will preferentially generate small cuts, because small
cuts are only connected by very few edges, so that the probability to contract one
of those edges is low.

23



To keep track which vertices are contracted to determine the sets which are divided
by the cut, this algorithm is supplemented by a Union-Find structure (also called
disjoint-set forest) with weighting and path compression [24, 47, 48].

4.2.3. Implementation Details

First the connected components are identified by a DFS. If there are more than
one connected component, one SEC for every connected component S is added,
else the Stör-Wagner algorithm is used to check whether there is a global minimum
cut with weight less than 2. If not, all SECs are fulfilled and all needed cutting
planes are already generated, else the violated constraint is added and Karger’s
algorithm is used K = O (N) times to find some additional cuts less than 2. The
additional SECs generated this way are by no means necessary but speed up the
process, because some SECs are generated in this iteration which would otherwise
be generated in the next which would result in additional calls to the simplex solver.
But there is also the possibility that SECs are introduced which are unnecessary,
which leads to longer run times of the simplex solver. K is chosen empirically by
run time measurements on some TSPLIB instances as K = N/20. This program
flow is also depicted in Appendix C Figure C.1.

4.3. Blossom Inequalities

This section will introduce some advanced cutting planes, which are not in focus
of this thesis as only Section 6.2.3 is concerned with a specific subset of the here
introduced inequalities. Though because of their importance to the solution of
TSP by linear programming and being the obvious way to extend this study, they
are mentioned. For further details Ref. [39] is a good starting point.

Blossom inequalities (also called blossoms) [49] are inequalities, which are fulfilled
by every TSP tour. If a LP relaxation violates one of them, the LP can be tightened
by adding the violated inequality as a cutting plane. The blossoms are defined by
Equation (4.13) given the definitions from Equations (4.8) to (4.12).

Let S0, S1, . . . , Sk be proper, non-empty subsets of V , with

k odd (4.8)

Si ∩ Sj = ∅ ∀i, j ∈ {1, . . . , k} (4.9)

S0 ∩ Si 6= ∅ ∀i ∈ {1, . . . , k} (4.10)

Si \ S0 6= ∅ ∀i ∈ {1, . . . , k} (4.11)

|Si| = 2 ∀i ∈ {1, . . . , k} (4.12)
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An example of possible Si for k = 5 is sketched in Figure 4.3. This sketch

S1

S2

S3

S4
S5

S0

Figure 4.3: Visualization of a possible configuration for k = 5 of the sets S0, S1, . . . , S5.
Note how the 5 sets S1, . . . , S5 resemble the petals and S0 the carpels of a blossom [50].

resembles loosely a blossom with 5 leaves, which explains the name. Given the set
of sets {S0, S1, . . . , Sk}, the blossom inequalities are defined as

k∑
m=0

∑
i∈Sm,j /∈Sm

xij ≥ 3k + 1, (4.13)

i.e. one inequality for every distinct set of sets {S0, S1, . . . , Sk}. Sloppy formulated,
the weights of the edges leaving those k + 1 sets are are summed and have to be
at least 3k+1. Obviously the number of constraints poses an even worse problem
as the SEC, and again the solution lies in polynomial-time separation algorithms
[51].

A superset of the blossom inequalities are the comb inequalities12 which do not
have to fulfill Equation (4.12), but for which no polynomial-time separation is
known yet.

4.4. Integer Programming

With the chosen formulation only integer xij are meaningful. Thus to solve the
TSP, a simple LP solution, which can be obtained in polynomial time, is not
sufficient. Instead an IP problem, which is known to be NP-hard, needs to be
solved. In Figure 4.5 the example introduced in Figure 4.1 is visualized as an IP.

12The name originates from the interpretation of S0 as the handle of the comb and S1, .., Sk as
the teeth, such that a sketch of those sets resembles a comb.
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S1
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(a)

S1

S2
S3

S0

(b)

Figure 4.4: Two examples of blossom inequalities with k = 3. (a) shows a valid tour
obeying a blossom inequality with,

∑k
m=0

∑
i∈Sm,j /∈Sm xij = 10 ≥ 3k + 1 = 10. Mind

that the thick line is counted three times, for leaving S0, S1 and S3. Dotted lines do
not leave any set, and thus do not appear in the summation. (b) shows a part of a
non-integer tour violating the shown blossom inequality. The dashed line have weight
1/2 and therefore

∑k
m=0

∑
i∈Sm,j /∈Sm xij = 9 � 3k + 1 = 10. Mind that the dashed lines

are counted twice (with weight 1/2) as they are leaving, e.g. S1 and S3.
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9x1 + x2 ≤ 5

x1 +
1
5x2 ≤ 2.5

Figure 4.5: Visualization of an IP. Only solutions with integer variables marked by
crosses are feasible solutions. The optimum of the LP relaxation marked by a dot is not
a feasible solution.
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Only the points marked with a cross are feasible integer solutions. To find the
best one, we can not use a mathematical elegant way like the simplex algorithm,
but have to try some, possibly exponentially many, points. The state of the art
method for this purpose is called branch-and-cut [52].

The branch part of the name refers to the building of a tree which is used to find
the best solution by backtracking. The branching is done by adding an additional
constraint which divides the solution space in two half-planes, e.g. x1 ≤ 1 respec-
tively x1 ≥ 2 in the example Figure 4.5. For each subtree a lower bound (for
maximization problems an upper bound) can be calculated, so if the current best
solution is less than the lower bound of any subtree, that subtree is discarded.

The cut part of the name refers to cutting planes which are introduced at every
node in the tree, as explained in Section 4.1. In Figure 4.6(a) a cutting plane
is added to the IP from Figure 4.5 and the LP relaxation is solved again, which
tightens the lower bound of that subtree. In Figure 4.6(b), after another cutting
plane, the LP relaxation is integer, therefore the optimum is found. Note that
those cuts are possibly valid for the whole problem and can be reused in other
parts of the tree.

Because this is again not implemented by myself, I will not go beyond these basic
ideas behind the algorithm. The interested reader is again referred to the literature
[52, 53].

27



x1

x2

1

2

3

4

5

6

1 2 3 40

4
9x1 + x2 ≤ 5

x1 +
1
5x2 ≤ 2.5

2x1 + x2 ≤ 6

(a)

x1

x2

1

2

3

4

5

6

1 2 3 40

4
9x1 + x2 ≤ 5

x1 +
1
5x2 ≤ 2.5

2x1 + x2 ≤ 6

x1 + x2 ≤ 5

(b)

Figure 4.6: Visualization of the cutting plane method. Cutting planes shrink the solu-
tion space without forbidding feasible integer solutions by adding additional constraints
iteratively such that the current LP relaxation optimum is in an infeasible region after
the cut. Therefore a LP relaxation has to be solved again after each added cutting plane.
In (a) one cut is added to the example from Figure 4.5 and in (b) a second cut is added
such that the LP relaxation is integer and the optimal solution of the integer problem is
obtained.
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5. Short Introduction to Phase Transitions

A phase transition is the sudden change of an observable in a thermodynamic sys-
tem. A thermodynamic system is a system consisting of many – which means
infinitely many in the thermodynamic limit – elements following some (often sim-
ple) rules, which lead to emergent collective behavior of the whole system. For
example a gas consists of many molecules, which have an energy and interact
with each other approximately according to a Lennard-Jones potential, but shows
emergent properties like density or temperature, which are undefined for single
molecules. Coupling this system to a heatbath and reducing the temperature be-
low some critical point will lead to the condensation of the gas to a liquid. At the
point of this transition the order parameter, in this case the density, changes in a
non-continuous way. This is a first order phase transition – the archetypal phase
transition in the context of classical thermodynamics.

But in addition to first order phase transitions, there are also continuous or sec-
ond order phase transitions, where the order parameter changes continuously and
without latent heat. A real world example is the phase transition of ferromag-
netic materials to paramagnetic above the Curie temperature Tc of that material,
i.e. above Tc magnets fall off of the fridge. Note that in both examples there are in
the order of N ≈ 1023 particles involved, which are enough that the results for the
thermodynamic limit N →∞ are applicable without any measurable deviation.

Although the term “thermodynamic” and both examples may suggest that phase
transitions are somehow connected to temperature, this is not necessarily the case.
Many systems for which no temperature is defined show phase transitions. The
best known example for such a model is probably percolation [54], which is a
simple model on a lattice where sites on the lattice are occupied with probably
p. At a critical pc there exists a cluster of adjacent occupied sites spanning the
whole lattice. Also many of the classical NP-complete problems [15–21] show
phase transitions as already mentioned in the introduction.

5.1. Critical Exponents and Universality

A property shared by all second order phase transitions is that observables like
the order parameter, e.g. the magnetization m for the ferromagnet example, are
power-laws near the critical point, e.g.

m(T ) ≈ |T − Tc|β . (5.1)
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Since power-laws can be characterized by their exponent, the critical behavior,
i.e. the behavior near the phase transition, can be expressed by very few critical
exponents [55].

One remarkable property of second order phase transitions – probably the one that
makes their study so worthwhile – is that the critical exponents do not depend on
details of the model, like boundary conditions or lattice structure (if the model
involves a lattice), but only on a few properties, often the dimension of the lattice.
This led to the classification of problems in universality classes. The members of a
class share the same properties near the phase transition, i.e. they share the same
critical exponents. One can model very simple systems but still get results that are
applicable to a whole range of critical phenomena in real world materials, e.g. the
three dimensional Heisenberg model can predict the critical magnetic behavior of
a wealth of otherwise unrelated alloys [56].

5.2. Finite-Size Scaling

The transitions mentioned above are only sharp for the thermodynamic limit,
e.g. for percolation on finite lattices there obviously exist instances without a
spanning cluster even for p > pc. Such deviations are called finite-size effects
and are inherent to all computer simulations of thermodynamic systems, since un-
fortunately computers do only have finite memory, therefore direct simulations of
the thermodynamic limit N →∞ or real-world systems N ≈ 1023 are impossible.
But the properties for infinite systems can be extracted from simulations of finite
systems. The prerequisite is the scaling hypothesis [56], which is that observables
scale in vicinity of the transition point with power laws as a function of the sys-
tem size N – which is well established by numerical work on second order phase
transitions.

Then finite-size scaling (FSS) [56, 57], which is used throughout this thesis (and
many publications), can be used to make predictions about infinite systems. In
fact, this can be used to rescale measurements on different system sizes such that
they are independent of the system size and thus collapse on one curve, when
plotted together. This can be used to validate the estimated exponents and even
to get estimates of the exponents (which are two, because both axes may have to
be rescaled). This can be written as

O = NβÕ [Nα(p− pc)] (5.2)

with p being the parameter to tune, e.g. often temperature, and some unknown
scaling function Õ [·]. Hence the simulations will be done for a wide range of dif-
ferent system sizes N . This form is usually deduced using the correlation function
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ξ between the elements in the system. For this model, however, it is not really
clear – at least to the author – what the equivalent to ξ would be in this context.
Therefore Equation (5.2) is used without any kind of attempt to make it plausible,
besides the assurance that it works very well for problems of statistical mechanics
[55–57]. Later the results will show that this leap of faith does yield some very
interesting results, as this technique is often used throughout this thesis to find
critical points and exponents.

However, since the power-law behavior is not an exact result, often correction
terms need to be added, to describe the results with greater fidelity. These are
called corrections to scaling and have bigger influence on small N . In this thesis
no corrections to scaling are considered, instead FSS analyses are performed for
system sizes large enough for the corrections to be negligible.
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6. Results

This section will state the results of the computations, compare them with the
literature, crosscheck with other methods and give interpretations. First the tech-
nical details needed to reproduce the results and give an idea of the quality of the
data is given in Section 6.1. In Sections 6.2 to 6.4 the main result of this thesis is
explained in detail, and Section 6.5 states some minor result. Finally in Section 6.6
some work is done to reproduce and extend results of older studies using the data
already generated for the main part. This part comes therefore effectively without
cost and does not only confirm the old results with more data, but also increases
the confidence of the correctness of the main results. Some results which were gen-
erated during the study and helped the author to develop a deeper understanding,
but are not – or just loosely – connected to the core of this thesis, are banished to
Appendices A and B.

6.1. Technical Details

The results are mainly calculated for 11 different system sizes N ∈ [32, 180] which
are rounded powers of 4

√
2 times 80 different values of σ ∈ [0, 60] each time averaged

over 5000 random realizations. Where exact results are not needed, the SEC LP
relaxation for 10 more sizes up to N = 1448 cities and the degree LP relaxation
up to N = 2048 are solved. Further, if the branch and cut tree grows beyond a
memory threshold of 900 MB, the optimization is aborted and the configuration
not considered. This never happened in the region σ ≤ 4, but at N = 180 and
σ ≈ 10 about 20% of all configurations exceeded this memory threshold. Therefore
results for exact tours at σ > 4 could deviate from the real properties, because
a significant fraction of the instances were not solved to optimality. This is no
problem for this analysis, because the points of interest are at σ ≤ 4 as will be
shown in Section 6.

All errorbars and error estimates in this thesis are either estimates obtained via
bootstrap resampling [58–60] (with 200 bootstrap samples) or for fits the asymp-
totic standard error as given by Gnuplot13 normalized by χ as proposed by [59] if
not noted otherwise. Symmetric errors are given as a = 1.23(4) where the number
in braces denotes the error of the last digit, i.e. the above value is equivalent to
a = 1.23± 0.04.

Some of the following plots will show lines, which are just linear interpolations as
guides to the eye if not explained otherwise, e.g. fits are explicitly mentioned in

13Gnuplot is a free and open source graphing utility. http://gnuplot.info/
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the caption and the text.

The program is written in C++ while the data is evaluated with Python scripts.
The source is available upon request14. All calculations were performed on the
High-End Computing Resource Oldenburg (HERO) or on a simple workstation.

CPLEX 12.6 is used as a framework to formulate and solve LP problems, i.e. its
simplex and branch-and-cut implementation are used. This is a black box in
the solving process, which is not optimal for the method dependent parts of the
analysis. In fact CPLEX uses a bunch of generic cutting planes and heuristics
which are partly considered trade secrets. Both are disabled when properties of
the LP process are under scrutiny. A few optimizations are done using Concorde
[39] – mainly for big instances used in images and for the analysis in Section 6.2.3.
Note that Concorde needs a LP solver to find optimal tours, therefore Concorde
was linked against CPLEX 12.6.

6.2. Probability that LP Relaxations are Feasible

As noted before, a phase transition from an easy circle to a hard distorted circle
should be provoked. As a measure of hardness the formal complexity class of the
algorithm is used in the following sense. If a LP relaxation is feasible and the
separation of the constraints can be done in polynomial time, then the instance
can be solved in polynomial time [44–46] and is therefore “easy”. Three different
LP relaxations will be under scrutiny in this section, first the degree LP relaxation,
a relaxation with only the N degree constraints Equation (4.3) and the N2 bounds
Equation (4.7) in Section 6.2.1, second the SEC LP relaxation, a formulation
additionally respecting all SECs Equation (4.4). And last the fast Blossom LP
relaxation which adds some Blossom inequalities Equation (4.13) as constraints to
the problem. Note that this could be extended to simple comb inequalities [37, 38]
which are separable in polynomial time.

As the “order parameter” to determine to which phase the σ at hand belongs to,
the probability p of the system being solvable by the chosen LP relaxation is under
scrutiny. For small σ, in the easy domain, it should be p = 1, i.e. always solvable,
and in the hard domain at large σ it should be p = 0, i.e. never solvable. In
between a transition is expected, which will occur for N → ∞ at σc and have
some critical exponent b. This p is plotted in Figures 6.1(a), 6.2(a) and 6.3(a),
where it is easy to see, that the “effective transition points” of the systems with
finite N are size dependent as the slope is steeper for larger system sizes. To
estimate σc these effective transition points can be extrapolated to N →∞. Here

14hendrik.schawe@uni-oldenburg.de
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the effective transition point is defined as the position of the peak of the variance
of p, i.e.

σmax = arg max
σ

{Var(p(σ))} .

which is plotted in Figures 6.1(c), 6.2(c) and 6.3(c). Technically the position is
estimated by fitting polynomials of second order

f(x) = a(x− x0)2 + b(x− x0) + c

to 5 points near the maximum of Var(p) and taking its maximum’s position at
σmax = x0− b

2a . The errorbar of the maximum’s position is estimated by bootstrap
resampling, i.e. 200 sets of fit parameters are generated from bootstrap samples to
estimate their errorbars [59]. Note that the value of the maximum of the variance is
always Var(p(σmax)) = 1

4 , which can easily be explained, because single realizations
are either soluble or not, such that the single measurements pi ∈ {0, 1} follow a
binomial distribution, for which the variance is defined as Var(p) = p(1− p) which
reaches its maximum at Var(p) = 1

4 .

As mentioned in Section 5, continuous phase transitions show power-law scaling
behavior, such that the power-law

σmax = aN−b + σc (6.1)

is fitted to the obtained maxima as shown in the insets of Figures 6.1(c), 6.2(c)
and 6.3(c).

As a cross check, to validate the values of the fit, a data collapse is performed,
utilizing the property from Section 5.2, such that one can rescale the σ-axis as
(σ − σc)N b to let all measurements collapse on one curve – at least in vicinity of
the critical point, i.e. near 0 on the rescaled axis. The p-axis does not need to be
rescaled, since p is a dimensionless quantity. Those collapses are displayed in Fig-
ures 6.1(b), 6.2(b) and 6.3(b). They omit errorbars for better readability and look
very acceptable. The collapse works best for large values of N , where corrections
to scaling have less influence. This can be observed in every collapse. Since the
extrapolation does not consider errors of the single points, the errors given, are
just a rough estimate, which seem to be overestimated, because the collapse does
yield drastically worse results for some values still within the errorbars.

6.2.1. Degree LP Relaxation

The degree LP relaxation is the weakest studied relaxation, in fact for a solution
of this relaxation to be feasible it is not sufficient to be integer, since subtours can
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Figure 6.1: (a) Probability p that the degree LP relaxation is feasible, i.e. the xij are
integer and there are no subtours present. (b) The same p plotted on a rescaled axis
such that the measurements collapse on one curve, with σlp

c and blp obtained from (c).
(c) Extrapolation of the transition point by a power-law through the peak positions of
Var(p) yielding σlp

c = 0.51(4) and blp = 0.29(6).
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still occur. Therefore once an integer solution is found, a DFS is performed to
ensure that the graph representing the tour is connected. If it is, the solution is
feasible. Note that this additional DFS is crucial for this kind of relaxation. In
fact, attempts to collapse the probability p of all integer solutions, regardless of
them containing subtours, fail.

6.2.2. SEC LP Relaxation

The SEC LP relaxation is the most natural relaxation of the TSP IP, since it just
drops the integer constraints. As evident from Figure 6.2(a) its solution probability
p is always greater than the one for the degree LP relaxation in Figure 6.1(a), which
is easily understandable because it uses a superset of constraints. The data collapse
in Figure 6.2(b) shows major corrections to scaling for the small systems. This
can be made plausible since for small systems there is no hard region, where no
realization can be solved, i.e. for N ≤ 6 every realization is solvable by the SEC LP
relaxation independent of σ and even for N = 64 there are always some instances
that can be solved, as evident from the non-zero variance in Figure 6.2(c).

6.2.3. Fast Blossom LP Relaxation

To get an even tighter LP formulation, some blossom inequalities (compare Sec-
tion 4.3) are added as cutting planes. The separation is done using heuristics,
which do not find all violated blossom inequalities, though polynomial-time al-
gorithms exist for this purpose. Here the Concorde TSP solver is used for the
separation of fast blossom inequalities, and the analysis whether the solution of
this relaxation is a feasible TSP tour or not. Here arise some small deviations
from the analyses done before, because Concorde rounds the distances to integer
values, which is mitigated by scaling the whole system by a sufficiently large factor
to reach a comparable precision as with the floating point distances in all other
calculations. Further the class of fast blossoms is not well defined, i.e. the set of
found fast blossoms is dependent on internal choices for the heuristics – in fact
Concorde does this dependent on a seed with a pseudo-random number generator.
But since this study just looks at stochastic averages, this is not a serious problem.
The heuristics themselves are well defined and the reader is referred to [39]. I will
call this relaxation by a non-canonical name fast Blossom LP relaxation.

As expected, the solution probability p is always higher than for the SEC LP
relaxation and therefore the critical point moves. But the critical exponent seems
to stay the same.
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Figure 6.2: (a) Probability p that the SEC LP relaxation is feasible, i.e. xij are integer.
(b) The same p plotted on a rescaled axis such that the measurements collapse on one
curve, with σcp

c and bcp obtained from (c). (c) Extrapolation of the transition point by a
power-law through the peak positions of Var(p) yielding σcp

c = 1.07(5) and bcp = 0.43(3).
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Figure 6.3: (a) Probability p that the fast Blossom LP relaxation is feasible, i.e. xij are
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c and bfb obtained from (c). (c) Extrapolation of the transition
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6.3. Structural Properties

While Section 6.2 is about the solution method, this section is about actual op-
timal solutions. If the solution to the SEC LP relaxation is not feasible, i.e. not
integer, the optimal tour is found by a branch-and-cut search as described in Sec-
tion 4.4. The aim is to look at the properties of the optimal tours, which are in no
way related to the solution process and find observables which hint at the phase
transitions found in Section 6.2, which are extracted from observations of the so-
lution process. In other words, seek correlation between hardness and physical
properties.

This succeeds for the degree LP relaxation (see Section 6.3.1) and SEC LP relax-
ation (see Section 6.3.2) but no physical property exhibiting a transition coinciding
with the fast Blossom LP relaxation transition was found. Anyway, since the fast
Blossom LP relaxation is heavily based on heuristics, it is not a huge setback. For
further studies a look at a relaxation implementing all blossom inequalities or, say,
simple comb inequalities, would be promising.

6.3.1. Difference to the Circle

Comparing the optimal solution tour x∗ij to the optimal tour at σ = 0, i.e. the
tour along the circle x◦ij, it is expected that they are similar at small σ. A way to
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Figure 6.4: Difference of the optimal tour to the initial circle d as a function of σ. The
difference d is defined as a suitable normalized Hamming distance (see text).
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measure this similarity is to look at the number of edges occurring in the one tour
but not in the other, i.e. the Hamming distance [61]. The tour difference d shown
in Fig. 6.4 is the Hamming distance normalized by 2N , such that two tours with
no common edges would result in d = 1 while two tours visiting the cities in the
same sequence would result in d = 0. This observable seems to be independent
of N . Fig. 6.4 suggests that realizations are solvable by the degree LP relaxation
alone as long as d = 0, i.e. the solution is the same sequence as the circle x∗ij = x◦ij.

6.3.2. Tortuosity

Pictures of optimized tours as shown in Figure 3.3 show more meandering courses
with increasing σ. As a measure of this “entanglement”, the tortuosity τ is intro-
duced in Ref. [62]. It was originally created to evaluate images of blood vessels
in the retina to detect vascular diseases. To calculate τ , the tour is segmented
into n segments of same-sign curvature. Let the arc length Li be the length of the
segment i along the tour and let the chord length Si be the distance between the
first and last city of the segment i. L is the total length of the tour. Then the
tortuosity is defined as

τ = n− 1
L

n∑
i=1

(
Li
Si
− 1

)
. (6.2)

That means that for a high tortuosity τ , detour-like structures, which connect two
points close to each other with a long bow leading to big Li

Si
− 1 values, and many

of those, to increase the factor n− 1, are needed.

(a) τ = 0 (b) τ = 0 (c) τ ≈ 1.3

(d) τ ≈ 2.4 (e) τ ≈ 4.1

Figure 6.5: Examples of the tortuosity of different curves. The length of (b) is 2, all
other curves are to scale. The segments of smae sign curvature are indicated by different
colors. (c) consists of two half circles, (d) of two 3/4 circles and (e) of four half circles.
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The straight line and the circle have both a tortuosity of τ = 0 while the shape of
a meandering river will yield a high τ . Also many small meanders will typically
yield a higher τ than few big meanders, because of the prefactor n− 1. Examples
for those cases are depicted in Figure 6.5.

Although this is originally a measure for continuous curves, it is easy to interpret
it for piece-wise linear curves. The segments are created by walking along the

a

b

c

ϕb −
+

(a) (b)

Figure 6.6: (a) Definition of the bearing ϕ. (b) An example tour. The n = 4 (clockwise)
segments are marked with different colors. For the i-th segment the arc length Li is the
length along the solid lines, the chord length Si along the dashed line.

tour and each time the sign of the bearing ϕ defined in Figure 6.6(a) changes, a
new segment is started. But mind that the segments depend on the orientation of
the walk, i.e. whether it is clockwise or counterclockwise. This, however, should
not influence the mean value over many realizations. Note that there are other
possibilities to define the tortuosity for piece-wise linear curves, e.g. first converting
it to a continuous curve with spline interpolation. In Figure 6.6 an example of a
(non-optimal) tour consisting of N = 16 cities and n = 4 segments is pictured.

Because there are single instances, where two cities are so close to each other that
the tortuosity is orders of magnitude larger for those realizations than the mean,
the two maximal measurements, corresponding to 0.04% of all, are discarded for
the calculation of the mean. Alternatively the median could be used, which does
look qualitatively similar, but seems yield slightly worse results in the following
analysis.

In Figure 6.7 the tortuosity peaks at roughly σcp
c . The positions of the peaks are

estimated by fits of straight lines left and right of the peak, as indicated by black
lines in Figure 6.7 for the example of N = 180. Their intersection is used as the
estimate for the peak position and extrapolated to N →∞ using a power-law

τmax = aN bτ + στc
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Figure 6.7: Tortuosity for different values of N ≤ 180 and σ. At στc = 1.06(23) the
tortuosity peaks. For σ & 1 the tortuosity scales according to the power-law τ ∝ N2.02(2)

with the system size as shown for σ ∈ {1, 2, 4, 6, 10, 18} in the inset.

similar to Section 6.2. This yields στc = 1.06(23), which confirms that the tortuosity
indicates the phase transition found before. Mind that the large uncertainty is
caused by the very rough method to estimate the peak position. Unfortunately
the exponent is not as robust and bτ obtained by this fit has a very large uncertainty
bτ = 0.67± 1.59, such that it can not be estimated with this method.

6.4. Is there Universality?

A property of phase transitions of second order is the fact that they can be cate-
gorized in different universality classes which are explained in more detail in Sec-
tion 5.1. To test whether the TSP on the FCE establishes an universality class, one
can change some details and see if the critical exponents stay the same. Therefore
in Section 6.4.1 the distribution from which the displacement of the cities is drawn
is changed and in Section 6.4.2 the dimension in which the cities are distributed is
changed. The analysis is the same as in Section 6.2. A comparison of all critical
points and exponents is also given as a conclusion in Table 6.1.
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6.4.1. Gaussian Displacement

If the displacement is not drawn from the uniform distribution r ∈ [0, σ] but
instead the displacement in x and y direction is drawn from a Gaussian distri-
bution ∆x ∈ G(0, σ) with zero mean and width σ, the resulting city positions
are surely different. For example arbitrary long displacements have a non-zero
probability. The probability that the SEC LP relaxation yields an integer solution
is shown in Figure 6.8 in the same way as before in Figure 6.3. The extrapola-
tion in Figure 6.8(b) yields a different critical point σcp,g

c , but a critical exponent
bcp,g = 0.45(5) which is in good agreement with the one from the SEC LP relax-
ation bcp = 0.43(3) thus suggesting that universality is indeed given.

Further, the tortuosity τ is calculated in the same way and for the same system
sizes N as in Section 6.3.2 and plotted in Figure 6.9, where one can see that it
peaks at στ,gc = 0.44(8) which is compatible with the critical point σcp,g

c = 0.47(3).
This simple test should mainly give confidence that τ is somehow connected to the
critical point of the SEC LP relaxation.

6.4.2. Spherical Displacement

Often the universality class changes if the dimension of the model is changed.
Though one can define the Euclidean TSP in higher dimensions, the starting con-
figuration of the FCE can not be generalized easily to higher dimensions. For
example, cities on a sphere instead of a circle are not easy to solve realizations
anymore, which is the rationale for the circle. Anyway, starting from a circle a
displacement of the cities inside a sphere of radius σ is tested next.

In Figure 6.10 the results of simulations for a narrow range of σ ≤ 4 are shown.
This range is sufficient to evaluate the peak-positions for σ ≥ 256 and get the
exponent bcp,3 = 0.40(4), but too short to extend the data collapse Figure 6.10(b)
to large rescaled values to demonstrate the deviations there from the FSS as in the
collapses before.

6.4.3. Comparison to the Vertex Cover Transition

In Ref. [22] the same analysis is conducted, but for Vertex Cover optimization on
Erdős-Rényi graphs, where the tuning parameter analogous to the σ in this thesis
is the connectivity c. There a LP approach with heuristic cutting planes led to
a transition from “solvable by LP” to “not solvable by LP” at c = 2.62(17) ≈ e
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Figure 6.8: (a) Probability p that the SEC LP relaxation with the Gaussian displacement
(see text) is feasible, i.e. xij are integer. (b) The same p plotted on a rescaled axis such
that the measurements collapse on one curve, with σcp,g

c and bcp,g obtained from (c).
(c) Extrapolation of the transition point by a power-law through the peak positions of
Var(p) yielding σcp,g

c = 0.47(3) and bcp,g = 0.45(5).
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Figure 6.9: Tortuosity for different numbers of cities N ≤ 180 and σ. At στ,gc = 0.44(8)
the tortuosity peaks.

where replica symmetry breaks [18]. Though the critical exponent b = 0.55(5) [63]
suggests, that these transitions do not belong to the same universality class.

6.5. First Excitation: The Second Shortest Tour

Glassy systems such as spin glasses or actual glasses (from which windows are
made) show a very rough and complicated energy landscape, which makes it es-
pecially hard to find the ground state, i.e. the configuration with minimal energy.
Interpreting the tour length L as an energy, the energy landscape of the TSP does
probably exhibit similar properties. To examine the energy landscape, excitations
of the ground state are created and their “distance” in configuration space to the
ground state is tracked. If two tours with a small energy/length difference are “far
away” in configuration space, this is a hint for a very rough and complicated energy
landscape with many local minima in which local searches can be trapped. As a
measure of distance in the configuration space, the tour difference d as introduced
in Section 6.3.1 is used again. Note that this measure is resilient against reversal of
slices of the tour. Since the used solution method enables exact solutions, instead
of some random excitation, the first excitation, i.e. the second shortest tour, can
be obtained. For every of the N edges {i, j} of the optimal tour, one edge at a time
is fixed to xij = 0 by adding this equality as a further constraint. Of the N solu-
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Figure 6.10: (a) Probability p that the SEC LP relaxation with the three-dimensional
displacement (see text) is feasible, i.e. xij are integer. (b) The same p plotted on a
rescaled axis such that the measurements collapse on one curve, with σcp,3
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obtained from (c). (c) Extrapolation of the transition point by a power-law through the
peak positions of Var(p) yielding σcp,3

c = 1.18(8) and bcp,3 = 0.40(4).
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σc b

degree LP relaxation σlp
c = 0.51(4) blp = 0.29(6)

SEC LP relaxation σcp
c = 1.07(5) bcp = 0.43(3)
στc = 1.06(23) –

σcp,g
c = 0.47(3) bcp,g = 0.45(5)
στ,gc = 0.44(8) –
σcp,3
c = 1.18(8) bcp,3 = 0.40(4)

fast Blossom LP relaxation σfb
c = 1.47(8) bfb = 0.40(3)

Table 6.1: Values of critical points and exponents grouped by different types of relax-
ations.

tions15, the solution with minimum length is the second shortest tour. Obviously
this method is very expensive, because N IP problems have to be solved.

The analysis is performed on configurations where the cities are uniformly, ran-
domly distributed inside the unit hypercube, e.g. the unit square in two dimensions,
instead of the FCE. Since this ensemble is the most well researched one, it is rea-
sonable to use it instead of the FCE. This also enables to look at proper defined
higher dimensional realizations.

First, the configurations in high dimensions give more freedom to the second
shortest tour, which is evident from the constantly higher d, i.e. more dissimi-
lar first excitation. Surprisingly the difference to the optimal tour d seems to
follow the power-law d = aN−δ with positive δ for all tested dimensions D ∈
{2, 3, 4, 5, 6, 8, 12, 20, 42, 96, 312}. Also the exponent δ seems to approach a limit
of

lim
D→∞

δ ≈ 0.4

as shown in Figure 6.11(b). This means that for infinitely large systems the fraction
of different edges between the shortest and second shortest tour likely approaches
d = 0 and confirms the assumption of many local search heuristics for the TSP –
that good tours a similar.

A similar analysis of low excitations – but not first excitations – is conducted in
Ref. [64] for the random-field Ising model (RFIM). There the overlap q of the
ground state and an excited state are measured. The overlap q is an observable
very similar to the tour difference d, as it basically counts the number of flipped

15Note that subsequent solution processes do not need to start from scratch, because all cutting
planes stay valid and most are still relevant.
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Figure 6.11: For N = 180, D ∈ {2, 3} and N = 152, D = 2 there are less samples
taken, therefore the errorbars are bigger. (a) shows a log-log plot of the tour difference d
between the shortest and second shortest tour for different system sizes N and different
dimensions D in which the cities are distributed. For infinite systems the difference d
approaches 0. (b) The exponent δ seems to reach a limit for big D of δ ≈ 0.4. The x-axis
is logarithmically scaled for better readability.

spins between two systems, q = 1 being identical spin configurations, q = 0 being
half of the spins flipped and q = −1 the inverse spin configuration, i.e. all spins
flipped. q = 1 is therefore analogue to d = 0 and q = 0 is analogue to d = 1.
But in contrast to the result of this section where d goes to zero for N → ∞,
Ref. [64] shows that the distributions of the overlap and therefore the mean q shift
to q < 1 for large systems (though the distribution get narrower with larger system
sizes which hints that the RFIM is not glassy). This is a hint that – at least the
Euclidean TSP – is not a glassy system.

Further study could be carried out for other random ensembles that are not based
on the Euclidean metric and possibly not even constrained by triangle inequalities,
as even the high-dimensional cases might not give enough freedom in that regard.
Another field for further study could be a look at the FCE and first excitation
properties as a function of sigma, since the length difference of the best and second
best tour would be about 1 for σ = 0 and shrink for larger sigma. Possibly the
phase transitions from Section 6.2 could be observed this way, too.
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6.6. The TSP Decision Problem

As noted in Section 2 NP-hard problems can be reduced to every problem in
NP. Especially the solutions of the TSP can be trivially reduced to solutions
of the corresponding decision problem. Since the TSP gives the optimal length
L∗ of a tour, the answer to the question, if there is a tour shorter than some
threshold Lt, can be answered after a single comparison of the optimal length and
the threshold. Thus the results from Ref. [21] can be reproduced easily. There the
probability p< that a solution shorter than a given length Lt exists was plotted over
a control parameter k = L√

NA
and rescaled until the curves of different system sizes

N collapse on one curve. Ref. [21] examines configurations created by a Poisson
process in the two dimensional unit square, i.e. with area A = 1.

6.6.1. Uniformly Distributed Cities in High Dimensions

In Ref. [21] the TSP decision problem was just solved in two dimensions for N ∈
{6, 12, 18, 24, 30} with a branch-and-bound algorithm. In this thesis not only a far
more efficient method is used but there is also far more computing power available
than in 1996 when it was published, therefore the same analysis is performed for
N ∈ [32, 180] cities which are uniformly distributed in D ∈ {2, 3, 4, 12, 42, 312}
dimensions, which are already optimized for Section 6.5. In [65–68] the control
parameter k is given for arbitrary dimensions D as

k = L

(NA)1−1/D .

Example plots of the cumulative distribution function (CDF) of the tour length L
and the control parameter k are given in Figure 6.12(a) respectively Figure 6.12(b).
The probabilities p< are estimated by a 20 bin histogram that is integrated using a
simple sum. In Figure 6.13 the critical kc and the scaling exponent ν are determined
by a FSS analysis comparable. The collapse is produced in an semi-automated way
by autoscale.py [69], which also offers an estimate of the quality of the collapse
S and an estimate of the error of the obtained values – kc and ν in this case –
further references are given in Ref. [69]. The lower the value of S, the better the
quality of the collapse, though because of statistical fluctuations a value of S ≈ 1
is considered as a good value. Because small instances are more susceptible to
deviations from the scaling behavior, only instances of N ≥ 92 were considered to
determine the collapse and smaller instances are omitted in the plots. As noted
above, the scaling assumptions are only valid near the critical point, i.e. near
zero on the rescaled abscissa, therefore only data points near zero in the range of
[−0.5, 1.5] on the rescaled axis are used to determine the collapse.
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Figure 6.12: CDF of tour length L and control parameter k plotted for two dimensional
uniformly distributed cities on the unit square. If more cities have to be visited, the tour
gets longer. The control parameter k, compensates this effect and shows an intersection
point of all system sizes N at a critical kc.

The value of kc = 0.721(4) for D = 2 is lower than in Ref. [21] which could be
caused by corrections-to-scaling-effects of the very small system sizes in used there.
In fact a value of kc = 0.7124(2) is expected, which is the N → ∞ asymptotic
optimal tour-length parameter k for the Euclidean TSP [66]. A far worse deviation
is visible for the obtained values for three- and four-dimensional configurations.
Though Ref. [66] states that kc should increase (though not strictly) with the
dimension, the values observed in Figure 6.13 are not in good agreement with the
expected ones k3

c = 0.6980(3) and k4
c = 0.7234(3). This could be caused by more

severe finite-size effects as for the quite small sizes used N ≤ 180 the fraction
of cities affected by the open boundary conditions is quite high. Therefore the
deviation from the values for N →∞ are plausible.

But the values for ν are in very good agreement with the values from Ref. [21] and
are within errorbars the same for all D which hints that this model is in the same
universality class for all dimensions.
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Figure 6.13: FSS analysis of TSP decision version. Here the probability p< that a
tour shorter than Lt exists is plotted over a rescaled parameter (k − kc)N1/ν with k =
L/(NA)1−1/D.
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6.6.2. The Fuzzy Circle Ensemble

Clearly for the FCE, the geometrical size grows with N since R = N
2π . To adapt it

to the aforementioned ensemble, this chapter will rescale the results, such that the
initial circle has R = 1 and thus the tour length L at σ = 0 is always L = 2π. This
simultaneously shows the need for a new control parameter. Here L instead of k is
chosen and is expected to get worse for configurations that deviate strongly from
a circle, i.e. small N at moderate σ. There a crossover to the control parameter
k is expected, since those realizations resemble a random point process (compare
Figure 3.3(f)). This effect is demonstrated in Figure 6.14 where a nice phase
transition with an intersection of all sizes at a critical Lc is observable for σ = 2
in Figure 6.14(a), while in Figure 6.14(b) for σ = 18 the smallest sizes do show
major deviations, as an example of the crossover. However for N → ∞ this has
no influence.
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Figure 6.14: The control parameter for the FCE seems to be L for small σ. The intersec-
tion in (a) is in the same place for all N . For big σ and small N , i.e. for configurations
where σ ≈ R = N/2π and the configuration is more similar to a random point process
than a circle, L can not be used as a control parameter anymore and a crossover to some
other is visible. In (b) this can be seen for N = 32 and N = 46.

In Figure 6.15 in the lower right at σ = 18 the crossover is not visible, since again
only instances of N ≥ 92 are plotted and considered to determine the collapse. The
bad S values for σ ∈ {6, 18} are probably an effect of this crossover. Considering

52



that, the collapses seem acceptable, though the uncertainty of 1/ν is ludicrously
big, despite the values are very compatible with the expectation, so that the high
uncertainty is again probably caused by the effects of the crossover.
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Figure 6.15: Data collapse of the CDF of the tour length L. The obtained ν confirm the
values from Figure 6.13 and the collapse works acceptable well. The p< axis goes from
0 to 1.
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7. Conclusion

This thesis shows that the Fuzzy Circle Ensemble driven by the parameter σ of
Euclidean TSPs has a continuous phase transition which can be characterized by
a critical exponent b. This seems to depend on the type of cuts used, since the
exponents from the degree LP relaxation differ from the other two relaxations.
The transitions observed in the solvability statistics of the degree LP relaxation
and SEC LP relaxation can also be observed in structural properties of the optimal
tours, i.e. in the Hamming distance to the initial circle tour x◦ij, respectively in the
tortuosity τ .

The second result of this thesis is about the first excitation of the ground state,
i.e. the second shortest tour, to test whether the energy landscape of this problem
shows similarities with glassy systems, where low excitations lead to finite fractions
of changes in the configuration. This result shows that for the first excitation of
the TSP this is not the case as the fraction of difference, measured as Hamming
distance, between the shortest and second shortest tour vanishes in the N → ∞
limit.

At last some results concerning the decision version of the TSP from older pub-
lications are reproduced and extended for higher dimensions. Since the data was
already generated for the other topics, this comes as a consistency check at no cost.
Also an attempt to extend those results for the FCE is shown and gives plausible
results.

8. Outlook

Some possible directions for further study are already laid out in the subsections of
the results Section 6, which will not be repeated here. Instead further suggestions
which extend this thesis in directions which are not explored here are listed.

In Section 6.2.3 the same critical exponent is observed as in Section 6.2.2. The
obvious way to extend this work, is thus to test, if the same critical exponent
occurs, for even tighter LP relaxations, like with all blossom inequalities, or with
all simple comb constraints [38]. It would be interesting if those would establish a
further phase transition at higher σ and if the critical exponent b stays the same.

A further interesting question for further study would be finding an answer to
why the tortuosity τ peaks at σc. Unfortunately τ is quite complex to measure
which likely decreases the chance to analyse it in depth. Therefore the search for
a simpler observable showing the transition would be of equal interest.
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A more approachable and promising way for further analysis would be proper-
ties of the distance matrices cij themself, because they are defining the instances
completely and start at a pretty simple structure, as for N → ∞ and σ = 0 the
distance matrix has the form of

cij =



0 1 2 3 4 . . .
1 0 1 2 3 . . .
2 1 0 1 2 . . .
3 2 1 0 1 . . .
4 3 2 1 0 . . .
...

...
...

...
...

. . .


. (8.1)

It would be interesting if one could look at the properties of the matrices for differ-
ent σ and maybe find hints for the phase-transition similar to the tour difference
from Section 6.3.1 or the tortuosity from Section 6.3.2 but with the advantage that
no optimal solution is needed for the evaluation [70].

The same reasoning is behind a deeper look at simple heuristics. Since they are
easy to obtain, it would be interesting if their solutions give any hints on the phase
transitions from Section 6.2. I already did a small first step in the context of this
thesis, which are shortly presented in Appendix A.
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A. Heuristics

In practical applications the global optimal tour is usually not needed, but a local
optimum within a few percent of the optimal length is sufficient. Therefore a
plethora heuristic schemes for the TSP were developed [4–6, 8]. Some of the most
simple heuristics will be compared to the optimal solution in Figure A.1 and shortly
explained in Appendices A.1 to A.4.
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Figure A.1: Comparison of the mean length of a solution of a heuristic LH compared to
the optimal solution Lopt for 5000 samples of system size N = 180. The exact solution
is therefore a horizontal line at LH/Lopt = 1.

The obvious result is that all except “random + 2-Opt” of these simple heuristics
yield the optimal solution for σ < σlp

c and start to deviate significantly afterwards.
This is a further confirmation, that the approach of determining the simplicity of a
city-configuration by looking at the solubility by LP yields plausible results. Also
note that the SEC LP relaxation “LP” is always very close to the optimal tour
and is an excellent lower bound for the optimal length therefore, though the gap
increases for σ � 3 which is not shown in this plot.

A.1. Nearest Neighbor

The Nearest Neighbor Neighbor heuristic is a greedy algorithm, which constructs
a tour by starting at a random city A and adding the city B nearest to A which
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is not already in the tour T .

B = arg min
{i∈V,i/∈T}

dist(A, i)

So for every of N cities the nearest neighbor from the remaining N− i cities has to
be found, which results in a O (N2) runtime. This is the method mentioned in the
opening quote of Karl Menger. An example tour with N = 100 cities optimized
by the Nearest Neighbor heuristic is depicted in Figure A.2(a). The start city is
marked by an additional circle around the city.

A.2. Greedy

The Greedy16 heuristic for the TSP follows a similar idea as Kruskal’s algorithm
[71] for minimum spanning trees. It chooses the shortest edge and connects its
endpoints if their degree is afterwards not higher than two and the loop would not
be closed by this edge, i.e. if it is possible to still create a valid tour after this
action. The test whether that edge would construct a loop, can be done in almost
constant time using a Union-Find data structure [47, 48] and the test whether the
degree of a city does not exceed 2 at any time, is trivial in constant time. Therefore
the overall time complexity is determined by the sorting of the N2 edges according
to their length, which is O (N2 logN). An example is shown in Figure A.2(b).

A.3. Farthest Insertion

The Farthest Insertion heuristic starts at a city and adds the city farthest away
from any city in the tour, i.e.

arg max
i∈V \T

min
j∈T

dist(i, j)

to the position in the tour such that the resulting tour has a minimal length. This
results in a time complexity of O (N3). An example is shown in Figure A.2(c).
There are also variations which take the nearest city instead of the farthest or take
the city which is cheapest to insert, i.e. increases the tour length the least. Because
they are conceptually similar, only Farthest Insertion is considered here17

16The name Greedy is a bit misleading because, e.g. Nearest Neighbor Appendix A.1 is also
greedy.

17Which is, by the way, the favorite insertion heuristic of William Cook, the maintainer of
Concorde [3, p. 69].
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(a) Nearest Neighbor
LH/Lopt = 1.28

(b) Greedy LH/Lopt = 1.24

(c) Farthest Insertion
LH/Lopt = 1.14

(d) Two-Opt starting from
the Nearest Neighbor tour
(a) LH/Lopt = 1.07

(e) Two-Opt starting from
random LH/Lopt = 1.05

(f) Optimal tour

Figure A.2: Examples of the samee N = 100 configuration optimized by different heuris-
tics. The fraction LH/Lopt is the result for this one example and not suitable to judge
the quality of the corresponding heuristic. The starting city, if applicable, is marked
with a circle. There is also a simple Python program for this kind of visualization at
https://github.com/surt91/TSPview.
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A.4. Two-Optimal Tours

The Two-Opt heuristic (also 2-Opt or 2-opt) performes a local search. It does not
construct a tour from scratch like the ones above, but improves an existing tour.
In Figure A.1 the above mentioned heuristics are also improved by Two-Opt and
labeled as “Greedy + 2-Opt”. The Two-Opt heuristic chooses two edges {a, b}
and {c, d} and changes their endpoints, such that the tour stays connected, if the
resulting tour gets shorter, i.e.

dist(a, c) + dist(b, d) < dist(a, b) + dist(c, d).

An example of a swap is depicted in Figures A.3(a) and A.3(b). This step is

A

B

C D

E

F

(a) Before 2-opt swap

A

B

C D

E

F

(b) After 2-opt swap

Figure A.3: The two dashed edges from (a) {C,F} and {A,D} are longer than {F,A}
and {C,D}, therefore they are exchanged resulting in a 2-opt tour in (b).

repeated for all O (N2) pairs of edges in the tour. If a pair of edges is found to
improve the tour, the swap is performed and the algorithm starts over again – that
means that exponentially many restarts may have to be performed in the worst
case, though starting from a tour created by other heuristics takes typically only
very few steps. Two-Opt gets easily trapped in local minima, hence it is dependent
on the initial conditions. It often yields good results for its simplicity and is often
combined with metaheuristics [72–74]. In particular for metric TSP there are no
edges that cross each other in a Two-Opt tour. An example where a random inital
tour is optimized is shown in Figure A.2(e). Also note that this heuristic can be
extended to change 3 instead of 2 edges to the Three-Opt heuristic [75] or more
general the k-Opt heuristics, which change k edges.

A.5. Analysis

Note that the same kind of analysis as in Section 6.2 can also be performed for these
heuristics – but then the problem has to be solved to optimality, otherwise there
is no way to determine if the heuristic found the optimal solution. Therefore it is
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Compare to Figure 6.2(c).
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only feasible for small systems and therefore especially susceptible to corrections
to scaling – mind that for the corresponding fits in Section 6.2 only N ≥ 256
are considered, while here the largest is N = 180, therefore the obtained values
should be handled with care. Nevertheless those heuristics show transitions but
with different critical points and exponents.

B. Run Time Metrics

In Figure B.1(c) the number of used cutting planes nc is plotted against the system
size N with the purpose of showing that only polynomial many are needed. For
this plot all cuts added are counted. Some of the added cuts can be redundant,
especially some of the SECs generated by Karger’s minimum cut algorithm could
chop off a subset of the solution space already constraint by another SECs from the
same iteration, i.e. those cuts are not tight. Also note that many of the SECs are
generated by an analysis of the connected components, that is as long as the graph
is not connected, for each connected component a SEC is added, which also could
introduce a few not-tight cuts. For more details see Section 4.2 and especially
Figure C.1. Despite CPLEX is able to discard some cuts which are not tight, the
analysis will focus on all cuts, to minimize the influence of the black box CPLEX.
All in all the number of cuts plotted here is not the number of strictly needed
SECs but an upper bound on that, which is sufficient to show the approximately
polynomial growth of the needed cuts.

A quite obvious method to measure hardness of a problem would be to count the
seconds a (sufficiently good) program needs to solve it. In practice this poses some
difficulties, because it is not only dependent on complicated things like compiler
flags, hardware, the system load of the compute-cluster and especially the skill of
the programmer, but also gives no real insight. The next best thing is to count
some fundamental steps of the algorithm. In this study a branch-and-cut algorithm
is used with well defined possible cuts, the SEC. As a measure of hardness we could
thus count the number of cuts nc done which is visualized in Figure B.2(b), or the
number of nodes nn added to the search tree until the optimal solution is found in
Figure B.2(a). Note that the number of nodes could be underestimated, because
during the run instances which search trees grow beyond a certain threshold are
discarded. Note that nc is divided by N , because Figure B.1(c) shows nc ≈ N .

As a crosscheck σcp
c and σlp

c are also displayed. σlp
c should mark the spot where

the number of cuts is first nc > 0, because beyond this point the degree LP
relaxation will start to yield infeasible solutions and needs to be augmented with
the SEC as cutting planes. Similarly σcp

c should mark the spot where the number
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Figure B.1: (a) and (b) show the number of cuts added to the formulation. (a) shows
the statistic for all instances and (b) is limited to the instances that are solvable by the
SEC LP relaxation. (c) shows the number of SECs added to the problem via cutting
planes until no SECs are violated by the LP relaxation. This – though not exactly linear
– seems to not grow substantially faster than the linear function f(N) = N

2 .
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Figure B.2: Number of nodes nn in the search tree of the branch-and-cut to find the
optimal tour. In (a) as a function of the tuning parameter σ and in (c) the median of
the number of nodes as a function of the system size N showing the exponential growth
of the run time. (b) shows the number of cuts in the branch-and-cut.
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of nodes first exceeds 0 (not counting the root node), since before all instances are
solvable by the SEC LP relaxation and afterwards the exhaustive search has to be
started. Though both statements are only strictly true for infinite N , both effects
are quite well observable in Figures B.2(a) and B.2(b). It is also expected that the
running time increases exponentially with N on the hard side of the transition,
this is actually well observable in the number of nodes as shown in Figure B.2(c)
for σ = 10 where a straight line in a half-logarithmic plot shows the exponential
relationship. Note that the largest system sizes do not appear in this plot, since
the statistic of those is skewed since the instances with many nodes are aborted
because of memory constraints.

Especially interesting is that phase-transitions in NP-complete problems from yes
to no are accompanied by a peak in the hardness, i.e. run time needed, to solve it.
For this NP-hard problem, this phase-transition is followed by a hard region.

C. Program Flow Diagram

Here a program flow diagram to clarify the separation of the SEC is shown. This
is just an extension of Section 4.2.
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Is the graph
connected?

Does Stoer-Wagner
find a min cut < 2?

There are no
violated SEC

Add SEC

k++ < K

Karger’s algorithm
yields a cut < 2?

Add SEC

return

yes

no

no

yes k=0

yes

no

yes

no

Figure C.1: Program flow diagram of the SEC separation used in this study. See also
Section 4.2.
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Glossary

Boost Graph Library

Boost is an open source library collection http://www.boost.org/.. 19

Concorde

Concorde is a state of the art solver for the TSP, free for academic use and
open source. http://www.math.uwaterloo.ca/tsp/concorde.html. 11,
18, 30, 33

CPLEX

CPLEX is a commercial LP and MIP solver from IBM, which can be used
as a C++ library and is free for academic use. http://www-03.ibm.com/

software/products/en/ibmilogcpleoptistud/. 18, 30, 57

degree LP relaxation

The degree LP relaxation is the LP defined by the by Equations (4.1), (4.3)
and (4.7).. 29–33, 36, 37, 44, 51, 60

fast Blossom LP relaxation

The fast Blossom LP relaxation is the LP defined by Equations (4.1), (4.3),
(4.4) and (4.7) and some constraints of type Equation (4.13).. 30, 33, 35, 36,
44
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Gnuplot

Gnuplot is a free and open source graphing utility. http://gnuplot.info/.
29

High-End Computing Resource Oldenburg

HERO is the HPC cluster of the Universität Oldenburg. It is funded by
the DFG through its Major Research Instrumentation Programme (INST
184/108-1 FUGG) and the Ministry of Science and Culture (MWK) of the
Lower Saxony State.. 30

Library for Efficient Modeling and Optimization in Networks

The LEMON Graph Library is an open source graph library of the COIN-OR
project https://lemon.cs.elte.hu/trac/lemon. 19

LP relaxation

A LP relaxation is a LP corresponding to some IP, i.e. it does not include
any integer constraints and might yield solutions, which are infeasible for the
corresponding IP.. 17, 19, 22, 24, 25, 30, 51

NP

See Section 2.. 8, 9, 14, 46

NP-complete

See Section 2.. 6, 8, 9, 26, 60

NP-hard

See Section 2.. 5, 6, 9, 14, 23, 46, 60

P

See Section 2.. 8, 14

SEC LP relaxation

The SEC LP relaxation is the LP defined by Equations (4.1), (4.3), (4.4)
and (4.7).. 17, 29, 30, 33, 34, 36, 40, 41, 43, 44, 51, 53, 59, 60
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TSPLIB

TSPLIB is a collection of real world, typically difficult TSP problems and
their optimal solutions [7].. 5, 21

Acronyms

BGL

Boost Graph Library. 19, Glossary: Boost Graph Library

CDF

cumulative distribution function. 46, 47, 50

DFS

depth first search. 19, 21, 31, 33

FCE

Fuzzy Circle Ensemble. 10, 39, 40, 44, 45, 49, 51

FSS

finite-size scaling. 27, 28, 40, 46, 48

HERO

High-End Computing Resource Oldenburg. 30, Glossary: High-End Com-
puting Resource Oldenburg

IP

integer programming. 9, 17, 18, 23, 24, 33, 44

LEMON

Library for Efficient Modeling and Optimization in Networks. 19, Glossary:
Library for Efficient Modeling and Optimization in Networks

LP

linear programming. 6, 13, 14, 17, 18, 22, 23, 30, 40
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MIP

mixed integer programming. 18

PTAS

polynomial-time approximation scheme. 5

RFIM

random-field Ising model. 44, 45

SEC

subtour elimination constraint. 14–19, 21, 22, 30, 57, 59, 60, 62

TSP

Travelling Salesperson problem. 5, 6, 9, 10, 14, 15, 17, 18, 21–23, 33, 39, 40,
42, 44–48, 51, 53, 54, 56

VC

Vertex Cover. 6, 40
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