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We define a higher order Deffuant model by generalizing the original pairwise interaction model
for bounded-confidence opinion-dynamics to interactions involving a group of agents of size k. The
generalized model is naturally encoded in a hypergraph. We study this dynamics in different hy-
pergraph topologies, from random hypergraph ensembles, to spatially embedded hyper-lattices. We
show that including higher order interactions induces a drastic change in the onset of consensus for
random hypergraphs; instead of the sharp phase transition, characteristic of the dyadic Deffuant
model, the system undergoes a smooth size independent crossover to consensus, as the confidence
value increases. This phenomenon is absent from regular hypergraphs, which conserve a phase
transition.

I. INTRODUCTION

The formation and diffusion of opinion in societies have
largely been studied from the point of view of Physics,
modeling the society in terms of a dynamical system of
interacting agents, by the means of stylized agent based
models, aimed at understanding the role played by dif-
ferent aspects of social interaction in the observed pat-
terns in real life. Different models have been proposed
which may be classified according to the representation of
the agents’ opinions (scalar or vector, continuous or dis-
crete variables), or by the structure of their interactions
(mixed population, or networked systems), or even by
the detailed aspects of the dynamics which are in gen-
erally grounded on disciplinary knowledge issued from
social sciences, like for example, the Social Influence The-
ory [1, 2].

The most popular aspects of social interactions, widely
considered by previous studies are homophily, agents in-
teract preferably with similar agents, and social influ-
ence, agents which interact become more similar. One
influential class of opinion dynamics models are bounded
confidence models, which implement homophily by a
threshold rule: only agents whose opinions lie within a
confidence range may interact. Two outstanding mod-
els of this class are the Deffuant-Weisbuch (DW) model
[3] and the Hegselmann-Krause (HK) model [4]. Both
model the opinion of the N agents in the population as a
continuous variable xi ∈ [0, 1], ∀i = 1, N and their main
difference is that while the DW considers pairwise inter-
actions and asynchronous updates, in the HK model, at
each step, all the agents synchronously update their opin-
ion by taking the average of each agent’s current opinion
and those of their neighbors.

All these models consider pairwise relations between
agents which can naturally be modeled by networks [1].
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However, pairwise interactions do not describe all possi-
ble ways of discussion in real life, and the particularities
of group discussion and decision making are still a matter
of discussion in Social Psychology [5–7]. This necessity
of going beyond pairwise interactions has been first ad-
dressed by generalizing previous models to the case of
group interactions mainly in the form of a majority rule,
as in the voter model [8] or in the form of an aggregation
rule that averages the opinion of the neighbours of the
active agent, as in the Hegselmann-Krause model [4].

Recently, the interest in multi-agent interactions [9] to
model group dynamics at a large scale did rise sharply
and several studies were published in the context of
opinion dynamics [10–16], (social) contagion [17–19] and
other dynamical processes [20, 21], which modeled the
topology of interactions by hypergraphs.

It has been shown that if the multi-agent interaction
is non-linear, -higher order interaction (HOI )-, the sys-
tem cannot be modeled by any inherently pairwise graph
[12]. Regarding opinion dynamics, multi-agent interac-
tions need to be considered to address problems where
individuals discuss in groups, like professional meetings
or private instant messenger groups.

Here, we generalize the DW model to the case where
the interactions occur in small groups. We perform ex-
tensive simulations of this higher order interaction Def-
fuant model, (HOID), for hypergraphs of different topol-
ogy. Our results show that considering hyperedges of size
k = 3 is already enough to modify qualitatively the way
consensus is reached with respect to the outcomes of the
pairwise DW dynamics. This modification is enhanced
with the introduction of larger hyperedges to the extent
that the phase transition from polarization to consensus
is replaced by a smooth crossover. We also show that,
as for networks, the outcomes of the dynamics strongly
depend on whether the hypergraph is regular or random.

While preparing this manuscript, we noticed Ref. [16]
appearing on a preprint server, which also studies a gen-
eralization of the DW model to HOI although with a
different model and approach. In Ref. [16], the strict
bounded confidence rule of the dyadic DW model is re-
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placed by a smoother criterion which enhances the in-
teraction of large hyperedges. Here, on the contrary, we
simply extend the standard notion of bounded confidence
to the hyperedge: the group will only interact if all mem-
bers of a hyperedge are within the confidence interval of
each other, which naturally brings as a consequence, that
large hyperedges are less likely to interact than smaller
ones. Moreover Ref. [16] mainly studies the mixed pop-
ulation case, along with some simulations of sparse hy-
pergraphs of very small size, while we focus in exploring
the interplay of the dynamical rules and the interaction
structure, with a particular attention in the finite size
effects that have been shown to be dominant in bounded
confidence models in networks [22]. Interestingly, these
two complementary works, address two possible alterna-
tive situations: while Ref. [16], assumes the existence of
nodes that could reduce discordance in the group, here
we focus on the role of a blocking minority.

II. MODELS AND METHODS

We propose the higher order interaction Deffuant
model (HOID), which generalizes the Deffuant-Weisbuch
(DW) model [3] from pairwise to higher order interac-
tions. This generalization of the DW model is straight-
forward because, unlike the HK model where node vari-
ables are synchronously updated, in the DW model, the
updates are done at the level of a binary edge, which is
easily generalized to the update of hyperedges.

The original DW model is defined for a set of N agents
each with a continuous opinion xi ∈ [0, 1]. The agents
can interact pairwise, provided that the difference of their
opinions lies within a confidence interval given by an ex-
ternal parameter ε, and they can also be restricted by an
underlying network (e.g., a lattice or a random graph).
The asynchronous dynamics takes place in discrete time
and at every time step, a pair of neighboring agents i and
j attempts to interact and update their opinion according
to

xi(t+ 1) =

{
(xi(t) + xj(t))/2, if |xi − xj | < ε

xi(t), otherwise
(1)

Note that this dynamics is a particular case of the
original model, where the amplitude of opinion change
towards the mean opinion is given by a parameter, µ. In
our case, this parameter is set to its maximal value, such
that both agents assume their average opinion after one
successful interaction. For homogeneous confidences this
should result in a higher convergence speed to the final
state. This update rule means that either two neighbors
discuss and arrive at a compromise opinion or do not
discuss at all, depending on the confidence parameter ε.

To account for the fact that discussions are not exclu-
sively happening between two persons, but may involve a
group of agents, we need to replace graphs encoding pair-
wise relations, by hypergraphs. A hypergraph H = (V,E)

is defined by a set of nodes or vertices V representing
the agents and a set of hyperedges E, which is a sub-
set of the powerset of V , i.e., can contain any subset of
V . This way a hyperedge e ∈ E establishes a relation
between its members, which encodes the group interac-
tion. The number of nodes N = |V | is called the size of
the hypergraph or the system size. The degree di of a
node i is the number of hyperedges the node is a member
of. A hypergraph is called uniform or k-uniform, if all
hyperedges e ∈ E have the same size k = |e|. For clar-
ity, we refer to conventional graphs as dyadic graphs or
2-uniform hypergraphs.

In this framework we modify the dynamical rule such
that at each time step a random hyperedge e is selected
and every member i ∈ e is updated according to

xi(t+ 1) =

{
xe, if maxj∈e xj(t)−minj∈e xj(t) < ε

xi(t), otherwise,

(2)

where xe = 1
|e|
∑
j∈e xj is the average opinion of all

members of the hyperedge. So interaction only happens
if all members are within the confidence range of each
other. This rule addresses the situation where an indi-
vidual holding a very different opinion from the rest of
the group, by blocking the discussion, prevents an other-
wise possible compromise to reach consensus.

For small confidence ranges ε this means that the prob-
ability of a successful interaction for a hyperedge (pro-
vided that the opinions of the members are random and
independent, which is the case for the initial conditions
of our model) decays exponentially in the size k of the
hyperedge, and therefore, large groups have a low prob-
ability to reach a compromise opinion.

It is worthwhile noticing that the group interaction
proposed here is different from the interaction between
an agent and its group of neighbors that rules the dy-
namics of the Hegselmann-Krause (HK) model [4]. This
becomes apparent when considering the projection of an
example hypergraph onto a dyadic graph shown in Fig. 1.
In the HK model, each agent checks every neighbor syn-
chronously and updates its own opinion by taking into
account the opinion of all its neighbours whose opinion
differs from its own in less than the confidence, ε, regard-
less of the differences between the opinions of those neigh-
bours among themselves (which could be larger than the
confidence). The HOID model, on the other hand, up-
dates one hyperedge at a time. This means that in the
example of Fig. 1, the state of vertex 3 might be updated
three times (when updating hyperedges green, violet and
orange) provided that all the nodes of each hyperedge
have their opinions within the confidence range. As a
consequence, a dissenter can block the interaction of all
other agents in the hyperedge, a mechanism absent from
the HK model. Indeed, if the update rule is non-linear,
like the threshold value for the HOID, hypergraph in-
teractions cannot be mapped to a dyadic graph. Also
note that for a 2-uniform hypergraph this model reduces
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directly to the well studied DW case.
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FIG. 1. Example of a hypergraph (left) and its projection
to a dyadic graph. In the hypergraph, the degree of node 4 is
d4 = 1, since it is only member of one hyperedge, the degree
of node 2 is d2 = 3 since it is a member of three hyperedges.

As usual, we start the dynamics with initial opinions
drawn from a uniform distribution U [0, 1]. The dynamics
eventually leads the system, after a long transient, to a
final state [23], where the opinions of the agents do not
change anymore. As convergence criterion we require
that after performing a sweep, i.e., N attempted updates,
we have:

N∑
i=0

|xi(t)− xi(t− 1)| < 10−3 (3)

This criterion, which has already been tested in different
studies of the HK model [22, 24, 25] does become sharper
for larger systems and is especially suited to ensure that
regions of very dense agents are static. Since our main
observable is the relative size of the largest cluster S, i.e.,
the fraction of agents having the majoritarian opinion
within a tolerance of 10−3, we expect this criterion to lead
to accurate results while saving a lot of computations on
converged systems.

A. Random hypergraph ensembles

Although the original DW model was also studied on
a complete graph, its generalization to HOI in this con-
figuration is less interesting. In fact, the interaction rule
applied here induces a very low probability for the large
hyperedges to interact. As the complete hypergraph con-
tains far more large hyperedges than small ones, this will
lead to blocking the evolution of the system, making the
complete hypergraph non interesting. Instead, we focus
on a selection of ensembles of sparse hypergraphs, i.e., en-
sembles whose mean degree is independent of the number
of nodes. For the sake of comparison, we will generalize
the HOID model to lattices and random graph ensem-
bles, on which the DW [26–28] and related models [22]
were studied before.

1. Erdős-Renýı

First, we consider a generalization of the Erdős-Renýı
(ER) ensemble to hypergraphs. The dyadic ER consists
of graphs where every edge exists with probability p. In
the limit of large graphs, p = c/N , where c is the finite
expected degree the graphs are sparse.

To construct hyperedges in the same way, let us call pk,
the probability that k nodes taken at random, constitute
an hyperedge. Therefore

ck = pk
k

N

(
N

k

)
(4)

is the expected degree contributed by hyperedges of size
k. The total expected degree is simply c =

∑
k ck.

Technically, we construct realizations of this ensemble
by first determining how many k-hyperedges should ap-
pear in the graph by drawing a binomially distributed
random number from B(

(
N
k

)
, pk), since it is infeasible to

iterate all
(
N
k

)
= O(Nk) possible hyperedges of size k and

decide whether to include them or not with probability
pk. Since we are interested in sparse hypergraphs, we
calculate pk from the desired mean degree using the re-
lation given by Eq. (4). For large values of N it becomes
impractical to draw the number of hyperedges from a bi-
nomial distribution. Therefore, for an expected number
of hyperedges Mk =

(
N
k

)
pk = Nck/k > 103, we switch to

the Gaussian N (Mk,
√
Mk(1− pk)pk), ensuring that the

error introduced by this approximation is negligible.

2. Barabási-Albert

Additionally, we introduce a scale-free k-uniform hy-
pergraph, in the sense that the degree distribution -
the number of hyper-edges a node belongs to- follows
a power-law with an exponent 2 < γ ≤ 3. To construct a
realization we perform the preferential attachment pro-
cedure of the Barabási-Albert (BA) graph ensemble [29]
with hyperedges, which is a special case of the ensembles
introduced in [30, 31]. This ensemble offers the parame-
ter m determining the number of hyperedges introduced
for each node, which therefore determines the average de-
gree c ≈ mk. We start with a fully connected core, i.e.,
all subsets of size k are hyperedges, of M = max(m−1, k)
nodes. The remaining nodes are iteratively added. For
each node m hyperedges are introduced and their other
k − 1 neighbors are chosen as members with a probabil-
ity proportional to their current degree, avoiding iden-
tical hyperedges and nodes appearing twice in the same
hyperedge. This procedure leads to a scale free degree
distribution P (d) ∝ d−γ with γ = 2 + 1

k−1 [30] and re-
duces to the well known BA case for k = 2.
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B. Regular spatial hypergraphs

The DW model was also studied is the square lattice
as a very stylized way to introduce a neighbourhood em-
bedded in real space [3, 32].

There are different ways to introduce HOI in lattices.
Here we propose two regular structures based on the
successive neighbours (first, second, third, etc. nearest
neighbours) of the dyadic square lattice. The first case is
a 3-uniform hypergraph, where hyperedges connect up to
second nearest neighbors as shown on the left of Fig. 2.
This results in a mean degree of c = 12. The second case
is a 5-uniform hypergraph, where hyperedges connect up
to third nearest neighbour nodes as shown on the right
of Fig. 2. This results in a mean degree of c = 15.

FIG. 2. Two possible hypergraph configurations for lat-
tices with (a) k = 3, c = 12 (b) k = 5, c = 15. For clarity,
a ‘basis set’ of hyperedges is shown for the central node in
the foreground. Each node contributes such a basis set to
the hypergraph. In the background, with muted colors, all
hyperedges are drawn.

III. RESULTS

Unless stated otherwise we perform simulations for
1000 independent realizations of the system for each of
300 equidistant values of ε ∈ [0, 0.6], i.e., a resolution in ε
space of 0.002. For better visibility we present the results
as lines instead of symbols. The statistical uncertainty
is generally of the order of the width of the line. The
raw data of the final states consisting of the locations
and sizes of all clusters and convergence times are openly
available at [33] for the k > 2 cases.

Note that the HOID on k-uniform hypergraphs re-
duces to the DW model on the corresponding topology for
k = 2, therefore a look back at the DW helps to identify
the patterns that are directly related to the higher order
interactions. We include, for comparison, the results of
the dyadic DW model for each hypergraph topology.

As explained before, we do not intend to explore
the HOID model in the mixed population, due to the
high proportion of blocked hyperedges, however a careful
study of the dyadic DW model in the complete graph is
useful to identify which observed phenomena are already
present in the DW model in the complete graph, which

are induced by the interplay between the dyadic DW
model and the underlying topology, and finally, which are
associated with the introduction of HOID. Such study is
included in the Supplementary Material where we revisit
the results of the DW model for the complete network
presented in [22], including an extensive finite size study
that goes well beyond the sizes considered so far. The
corresponding raw data is openly available at [34].

A. Random Hypergraph Ensembles

1. Uniform Hypergraphs
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FIG. 3. Mean relative size of the largest cluster 〈S〉 as a
function of the confidence ε for the HOID model on k-uniform
hyper-ER graphs with edge sizes k ∈ {2, 3, 4, 5, 6} and an
expected mean degree of c = 10 for different system sizes each.
The insets show the variance Var(S), which is sharpening for
k ≤ 3 and vanishing for k ≥ 5, supporting the change from a
sharp transition to a crossover.

a. Erdős-Rényi Hypergraphs In this section we com-
pare the behavior of the HOID model on k-uniform ER-
hypergraphs, for different values of k. We are interested
in relatively sparse hypergraphs so, unless stated other-
wise, we consider c = 10.
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The first striking effect of the HOID model is the re-
gion of total fragmentation with 〈S〉 ≈ 0 for low ε, which
grows with k in Fig. 3. This phenomenon can be un-
derstood by recalling that, for fixed low values of ε, the
probability for the agents connected by a hyperedge to
interact shrinks exponentially in the number of members
of the hyperedge, k, since the k random initial opinions
must lie within a range of ε. So the amount of blocked
hyperedges grows with k and inhibits the dynamics of
the system for low values of ε.

More interestingly the very existence of a phase tran-
sition, for sparse hypergraphs, also depends on k. Fig-
ure 3 shows that for k = 2, 3 (k = 4 behaving as a limit
case) there is a transition from polarization to consensus
which gets sharper with increasing system size, however
for k > 4 the transition disappears letting place to a
crossover behaviour that becomes independent from the
system size. The variances at the inset of the panels con-
firm this: while they are sharpening with system size for
k ≤ 3, (in the manner of a diverging susceptibility) they
vanish with system size, for k ≥ 5

However, this behaviour is a characteristic of sparse
hypergraphs. For very large values of the average con-
nectivity c, a sharp transition reappears for the 6-uniform
ER-hypergraphs as shown in Fig. 4.
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ε

N = 256
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2048
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8192

16384

FIG. 4. Mean relative size of the largest cluster 〈S〉 as a
function of the confidence ε for the HOID model on 6-uniform
hyper-ER graphs with an expected mean degree of c = 150
for different system sizes.

Here we can observe once again, the importance of
the size effects in the study of bounded confidence mod-
els, which require extensive simulations in order to reveal
important qualitative aspects of their behaviour, as seen
in [22, 24]. Note that the curves for N = 256, 512 look
very similar to the bottom panels of Fig. 3 even at the
very high connectivity of c = 150, it is necessary to go to
larger sizes to observe the qualitatively different behav-
ior.

Finally, as consensus is setting in with increasing ε, an
extremely shallow minimum appears in the 〈S〉 curves,
in the cases k = 2, 3, for ε & εc. This effect is neither
related to the HOI, not to the networked structure, but
is a consequence of the asynchronous DW dynamics and
is present in the DW model in the mixed population (see
Supplementary Material). For larger k this shallow val-

ley is replaced by an almost perfectly linear increase in
〈S〉, before the onset of unanimity, for ε = 0.5. This be-
haviour results from the interplay of the DW dynamics
and the hypergraph, and is absent from DW on networks.
A heuristic argument allows to explain this behaviour: at
these relatively high values of the confidence the major-
ity of agents have converged to the consensus opinion and
those who have not, are blocked by at least one blocking
agent in all the hyperedges to which they belong (no-
tice that the other agents in the hyperedges could have
already converged). Since each agent is part, on aver-
age, of c = 10 hyperedges, it is probable that the agents
who have not converged are themselves the blocking ones.
This means that their opinion differs in at least ε from
the consensus opinion, where most of their neighbours
are. Assuming that those blocking agents did not allow
their edges to interact (or just few times) they are still
very close to their uniformly distributed initial opinion,
and therefore their number will decrease linearly in ε,
which induces the linear growth in 〈S〉.

We will see later that this phenomenon also exists for
other hypergraph topologies.

b. Barabási-Albert Hypergraphs It is known that be-
haviour of the standard DW dynamics is qualitatively
similar on the ER, and the BA networks. [26, 27]. Its
generalization to HOI introduces, nevertheless, some dif-
ferences. While as for the ER hypergraph, the behaviour
of the HIOD in the BA hypergraph differs more and more
from the corresponding dyadic model as k increases, this
differentiation is stronger than for the ER case: already
for k = 3 the polarization plateau completely disappears.
The size dependence of the order parameter 〈S〉 and the
variance, still suggest a phase transition, however, the
the difference between the values of 〈S〉 before and af-
ter the transition point is much smaller, than for the ER
case.

In order to understand the mechanisms that lead to
these different behaviours of the order parameter, we
examine the trajectories for both systems near the cor-
responding critical confidences εc. Fig. 6. shows that
while the trajectories for the ER case evolve to consensus
by joining two symmetric strands, (left panel of Fig. 6),
those of the BA case are asymmetric, with one majori-
tarian strand that contains a much larger share of agents
(right panel of Fig. 6).

Similar to the ER case, the sharp turns into a smooth
crossover for larger values of k.

Figure 7, illustrates the same phenomenon at the final
state, where one can observe that the cluster size distri-
butions before and after the transition are very different
for ER and BA hypergraphs. The almost isolated peak
at S = 0.5 of the ER hypergraph before the transition
shows that polarization involves two equally populated
strands that join into a single one after the transition
(ε = 0.3). On the contrary for the BA hypergraph, the
distribution is broad, around S ≈ 0.4, before the tran-
sition. Moreover, letting aside the very small clusters
(S ≤ 0.1), it looks quite symmetrical around the peak
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FIG. 5. Mean relative size of the largest cluster 〈S〉 as a
function of the confidence ε for the HOID model on k-uniform
BA with k ∈ {2, 3, 5} and an expected mean degree of c =
10 for different system sizes. The insets show the variance
Var(S), which is sharpening for k ≤ 3 and vanishing for k = 5;
the same behavior as for the ER.
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FIG. 6. Examples of the trajectory of a single realizations of
the HOID model on ER (k = 3, c = 10) and BA (k = 3, c = 9)
hypergraphs for N = 16384 close to their transition to con-
sensus. The horizontal axis is time in units of sweeps, i.e.,
N attempted updates. The dark colors show regions where
agents are highly concentrated, light color show regions with
only very few agents and white signifies the absence of any
agents. The colormap is truncated at S = 0.2, to better visu-
alize the small clusters, therefore the darkest shade represents
all values 0.2 ≤ S ≤ 1.0.

which still indicates polarization although with the exis-
tence of branches that could be unequally populated. At
the transition, this distribution presents a sharper peak
at S ≈ 0.7 showing that one of the two strands has gath-
ered more agents than the other. A heuristic argument
to explain these differences could be related to the very
high degree nodes (hubs) that are found, by construc-
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FIG. 7. Cluster size distribution of systems of size N = 65536
below and above the corresponding εc. Top panel: ER 3-
uniform hypergraph, εc = 0.277(1). Bottom panel: BA 3-
uniform hypergraph, εc = 0.257(1).

tion, in the BA hypergraph. As a hub belongs to many
hyperedges, it is likely to get unblocked in some of the hy-
peredges it belongs to. As it interacts in one of those hy-
peredges, its opinion evolves, allowing for the unblocking
of the other hyperedges it also belongs to, and therefore,
attracting all the nodes belonging to those hyperedges
to a common opinion. Other nodes, with less connectiv-
ity and not directly connected to the hub, are less likely
to grow a large cluster. In the ER on the other hand,
there are no hubs, and it is possible to observe several
nodes of relatively high connectivity distributed around
the network and not directly connected. They can grow
clusters independently around different opinions before
joining into a single strand at higher confidence values.

2. Non-uniform Hypergraphs

As shown on the previous sections, the behaviour of
the system for a given connectivity strongly depends on
the size of the hyperedges. Therefore it is interesting
to study what happens when the system contains hyper-
edges of different sizes. As we have seen that large hyper-
edges are more prone to remain blocked one could expect
that the dynamics is lead by the smaller, non blocked
ones. To further investigate this point we study a sys-
tem combining hyperedges of k = 3 and k = 5 which
have revealed different behaviours in the uniform hyper-
graphs. We study two different ways of combining these
hyperedges of different sizes: (a) same average connec-
tivity for edges of different size (b) same average number
of hyperedges of both kinds.
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From eq. 4 and, knowing that the average number of
hyperedges of size k is Mk =

(
N
k

)
pk, one obtains the

ratio of hyperedges of each kind M3 = 5/3M5 for the
case (a), where we have fixed, c3 = c5 = 5 such that
c = c3 + c5 = 10, for comparison with previous results.
For case (b), fixing again c = 10 one obtains the mean
degrees of the hyperedges of both sizes as c3 = 30/8
and c5 = 50/8, which are on the order of the sparse
hypergraphs previously considered.

0.0
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0.8

1.0

(a) c3 = c5 = 5

0.0

0.2

0.4

0.6

0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6

(b) c3 = 30/8
c5 = 50/8

〈S
〉

N = 256
1024
4096

16384

〈S
〉

ε

FIG. 8. Mean relative size of the largest cluster 〈S〉 as a func-
tion of the confidence ε for the HOID model on heterogeneous
hyper-ER graphs with a connectivity of c = 10 = c3 + c5,
where the connectivity c3 is caused by k = 3 hyperedges and
c5 by k = 5 hyperedges. In case (a) both types of hyperedges
cause the same connectivity c3 = c5 = 5. In case (b) there are
on average equal numbers of both hyperedges, i.e., c3 = 30/8
and c5 = 50/8.

Indeed, we observe that in case (a) the shape of the
curve is a slightly smoothed version of the 3-uniform case
without a hint for fundamentally new behavior, show-
ing that the k = 3 hyperedges dominate the behaviour.
This is not surprising as they are more numerous and
less susceptible to be blocked. On the other hand, when
the system contains the same number of hyperedges of
both kinds one does not observe the predominance of
the k = 3 behaviour, instead the curves look similar to
those of the ’intermediate’ 4-uniform case. Interestingly,
the same qualitative behaviour is observed when mixing
dyadic edges with k = 4 hyperedges, both randomly dis-
tributed.

We therefore conjecture that when the average number
of hyperedges of different sizes is the same, non-uniform
hypergraphs do not behave too differently from the uni-
form hypergraphs with k in the same range, with a be-
haviour that ‘interpolates’ between the two considered
uniform cases. In particular, we do not observe as could
have been expected, the smaller k dominating the be-
havior in this case, in spite of the property of smaller
hyperedges to be much less susceptible to blocking. This
is an interesting finding, because it gives a hint of the
behaviour of heterogeneous hypergraphs: hyperedges of

size k may dominate the behaviour when they are many
more than the others, however when the average number
of hyperedges is similar for all sizes, the expected be-
haviour would be similar to a uniform hypergraph with
an intermediate value of k.

B. Regular, Spatial Hypergraphs

We present here the results for the HOID model on
hypergraphs built in such way that they keep the regu-
larities and spatial symmetries of square lattice, with hy-
peredges including first, second and third nearest neigh-
bours. In Figure 9 the results on hypergraphs with hy-
peredges of sizes k = 3 (panel (b)) and k = 5 (panel
(c)) are compared with the corresponding dyadic DW
model in the square lattice with only nearest neighbours
(panel (a)) and with third nearest neighbours (panel (c)).
Notice that the three cases have a similar connectivity,
c ≈ 12, 15, which is also of the order of the sparse random
hypergraphs studied in section III A 1

Figure. 9 shows that the behaviour of regular hyper-
graphs is completely different from the random case: no
polarization is observed for both k values, and there is a
sharp transition from complete fragmentation to consen-
sus, that seems continuous (panels (b) and (c)). More-
over unlike for random hypergraphs, no crossover to a
smooth size independent behaviour for k = 5 is found.

Interestingly, while a longer reach of the interactions in
a dyadic lattice favours consensus, lowering the value of
εc (panel (d)), it does not for hypergraphs, because reach-
ing further neighbours implies involving larger group
sizes which are easier to get blocked.

As for continuous phase transitions in thermodynam-
ics, we observe a scale free distribution of cluster sizes.
This is the indication of a divergent correlation length
in the thermodynamic limit (see Fig. 10). However we
were not able to scale the order parameter, 〈SN 〉 (ε) =

S̃ ((ε− εc)Nν) with a unique exponent above and below
the transition.

IV. CONCLUSIONS

We generalized the Deffuant model to higher order
interactions, where the discussions take place in small
groups that cannot be reduced to combinations of pair-
wise interactions. This generalization involves some hy-
pothesis on how the interaction will take place inside the
group. Unlike in Ref.[16], where a discordance function
facilitating the interaction of large groups is proposed,
here we just follow the original DW premises by consid-
ering that in order to interact, all members of the group
must hold opinions inside the confidence interval. This
working hypothesis describes the situation where some
agents in the group, by holding an opinion that is very
far from the others’ may block an otherwise possible com-
promise. As a consequence, it is more difficult to reach
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FIG. 9. Mean relative size of the largest cluster 〈S〉 as a
function of the confidence ε for the HOID model on different
lattice-like topologies for different system sizes. Case (a) is a
nearest neighbor square lattice with k = 2 and c = 4, case
(b) and (c) are the spatial hypergraphs defined in Fig. 2 with
k = 3, c = 12 and k = 5, c = 15, and case (d) is a square lattice
with k = 2 and up to third nearest neighbor interactions, i.e.,
c = 12.
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FIG. 10. Cluster size distribution at ε = 0.2 for the HOID
model on a lattice with k = 3, c = 12.

a common opinion as the group becomes larger. At this
point it should be noticed that we have generalized the
Deffuant model in the case where the interacting agents
end up having the same opinion after the interaction. In
other words, the parameter µ of the original model is set
to its maximum value µ = 1/2. This is a very common
choice (see for ex. [16]) for computational reasons, be-

cause this parameter controls the speed of convergence of
the model [3]. However care should be taken in the case
of a heterogeneous model, with the agents characterized
by different confidences, as it has been shown that, in
this case the characteristic time scales are different for
different confidences and modify the outcomes of the dy-
namics [24].

The natural tool to model group interactions are hy-
pergraphs. We therefore perform large scale simulations
of this HOID model in sparse hypergraphs with different
hyperedge distributions. We observe that the fact of in-
troducing hyperedges completely changes the dynamics
with respect to the DW model in the corresponding net-
work topology. One reason for this is the blocking effect
of the hyperedges, which requires higher confidences to
overcome fragmentation (the domain of ε values where
〈S〉 (ε) = 0 increases with k).

The most interesting result of the inclusion of hyper-
edges, is that above a certain size of the groups the sharp
transition to consensus, well known from the original Def-
fuant model, changes to a smooth crossover. In other
words, when discussions take place in groups, a small
decrease in the confidence will not trigger a sharp dis-
ruption of the society from consensus to polarization but
a slow decrease of the amount of individuals sharing the
same opinion. Since such crossovers are generally prefer-
able to sharp transitions for the stability of real societies,
this fundamental mechanism could be of further interest.
The counterpart is that, in order to unblock larger hyper-
edges, larger confidences are required to leave the frag-
mentation region. When the hypergraph becomes dense
the phase transition still holds for hyperedges of k = 6,
but it is nevertheless less sharp than for smaller hyper-
edges.

Furthermore, the introduced model shows a richer
behavior on different hypergraph ensembles: while the
dyadic Deffuant model behaves qualitatively in the same
way on ER or BA networks, its generalization to hyper-
graphs shows different agents’ opinion trajectories for ER
and BA hypergraph.

It is worthwhile stressing the importance of studying
finite size effects for those systems. As system size in-
creases, new phenomena, absent for the smaller ones, of-
ten appear. In other cases the independence of the or-
der parameter with the size allows to distinguish a phase
transition from a smooth crossover. We note that many
studies on opinion dynamics do not look at the size de-
pendence at all or study only fairly small sizes, such that
similar fundamental differences for other systems might
have been overlooked in the past.

We also show that if the hypergraph is not homoge-
neous, the expected dominance of small hyperedges (due
to the fact that larger ones are more likely to be blocked)
does not occur , unless they are significantly majoritar-
ian. If the average number of hyperedges of different sizes
is the same, the system behaves similar to a uniform hy-
pergraph case with an intermediate k value. As a con-
sequence, heterogeneous hypergraphs, which are nearer
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to real societies, will mostly lead to a smooth crossover
rather than to a sharp transition.

Interestingly, spatially structured hypergraphs, unlike
random ones, seem to show the same behavior as dyadic
lattices. However, increasing the reach of the interac-
tion in the hypergraphs shows the opposite behaviour
than doing so in lattices. While there are no qualitative
changes in hypergraphs, beside the expected increase of
εc, a higher reach in dyadic lattices promotes consen-
sus. This is a consequence of the competing effects on
including further neighbours in the hypergraph, on the
one hand it increases the reach but on the other, by in-
creasing the size of the group, it enhances the possibility
of blocking hyperedges.

Finally, interpreting each hyperedge as a social group,
leads to the obvious extension to the dynamics by
granting the agents the ability to leave groups to join
another group. The departure could be triggered by
some measure of the frustration of not being able to
reach consensus within a group. This way of unblocking
larger edges, which models behaviour in real systems, is
the subject of forthcoming work.
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Data on cluster configurations for the Hy-
per Bounded Confidence model are available at
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The complete code is available at
https://github.com/surt91/hk
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