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Metropolis Monte Carlo sampling: convergence, localization transition and optimality
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Among random sampling methods, Markov Chain Monte Carlo algorithms are foremost. Using a
combination of analytical and numerical approaches, we study their convergence properties towards
the steady state, within a random walk Metropolis scheme. We show that the deviations from the
target steady-state distribution feature a localization transition as a function of the characteristic
length of the attempted jumps defining the random walk. This transition changes drastically the
error which is introduced by incomplete convergence, and discriminates two regimes where the
relaxation mechanism is limited respectively by diffusion and by rejection.

I. INTRODUCTION

Although Buffon’s needle problem [I] may be considered as the earliest documented use of Monte Carlo sampling
(18th century), the method was developed at the end of the second world war and dates from the early days of
computer use [2 B]. With the increase in computational power, it has become a pervasive and versatile technique in
basic sciences and engineering. It uses random sampling for solving both deterministic and stochastic problems, as
found in physics, biology, chemistry, or artificial intelligence [4HI0]. Monte Carlo techniques also allow to assess risk in
quantitative analysis and decision making [I1} [12], and their methodological developments provide tools for economy,
epidemiology or archaeology [13]. It is then crucial to understand the type of errors which can be introduced as a
consequence of the incomplete convergence of such algorithms.

Our interest goes to Markov Chain Monte Carlo techniques [14] [I5], that create correlated random samples from
a target distribution; a special emphasis goes to the relaxation rate of these methods. From the target probability
distribution, a sequence of samples is obtained by a random walk, with appropriate transition probabilities. The
walker’s density evolves at long times towards the target distribution, and quantities of interest follow from the
law of large numbers and other methods of statistical inference [ITHI9]. The Monte-Carlo method and its modern
developments [20H30] have now been adopted in many topics in and outside physics. A key issue deals with the
speed of convergence of the algorithm: the larger the convergence time, the larger the error bars for the computed
quantities. For most practical applications, if the amplitude a of the random jumps is small, phase space is not
sufficiently explored, even though most attempted jumps are accepted. Conversely, large jumps will lead to a large
rejection probability, and to an equally ineffective method, see Appendix [A] In between, one expects an optimal jump
size aopt at which the convergence rate is maximal. There have been theoretical attempts in deriving aqpt for specific
models [31]. In practice, without a precise knowledge of apt, & widely accepted rule of thumb is to choose a such that
the acceptance probability is close to 50% for the attempted moves [16] (17, [32]. In this paper, we show the existence
of a new critical value a*, where an unexpected localization transition occurs such that the relaxation mechanism is
drastically different for a < a* and a > a*. This deeply modifies the nature and amplitude of the error. The existence
of the critical value a* is our main finding, and the novelty of this work. Besides, although there is no reason to expect
any relation between aop, and a*, we report, rather interestingly, a number of examples, where they coincide precisely.
We emphasize that while a number of results have been proven for relaxation rates [33H35], we are interested in this
work also in relaxation eigenmodes, which in turn open the way to accurate approximations for relaxation rates.

II. MASTER EQUATION FOR METROPOLIS MONTE-CARLO SAMPLING AND RELAXATION TO
EQUILIBRIUM

We start with by reminding general results on the master equation describing relaxation of the Metropolis Monte-
Carlo algorithm. The spectral properties of Markov-Chains have been extensively studied in the Mathematical



literature [36] [37]. Here we instead focus on the eigenvectors (or their absence in the case of a localization transition)
which have received much less attention. This introduction will allow us to introduce notations and to contrast the
relaxation of a discrete Markov-chain with the relaxation properties that we find for the continuous case.

The Markov Chain Monte Carlo method amounts to considering a random walker with position z (here on the
line), in the presence of an external confining potential U(z). We adopt the framework of the Metropolis algorithm
[I5HI7, 38, [39]. The position of the particle evolves in discrete time steps n following the rule

Tp—1+ 1, With prob. p = min (1’ e B AU)
" &
Tp-1 with prob. 1 —p,

where AU = U(xp—1 + nn) — U(xy—1) and § = 1/(kpT) denotes inverse temperature. The random jumps 7, at
different times are independent, drawn from a continuous and symmetric probability distribution w(n). In other
words, the particle attempts at time n a displacement 7,, from its current location x,_;, which is definitely accepted
(with probability 1) if it leads to an energy decrease, but is accepted with a lesser probability e “#2U if the move leads
to an energy increase AU > 0. A key quantity in what follows is the amplitude a of the attempted jumps, that we
introduce as the characteristic length associated with w(n), taken to obey the scaling form

wln) = ~ f (nfa). 2)

Normalization demands that [ f= [w =1.
The dynamics encoded in Eq. can be written in terms of a Master equation for P, (z), the probability density
of the walker at time n,

P = | " Fsley) Par () dy. (3)
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The explicit form of the temperature-dependent kernel Fjg is given below in Eq. @ Generically, P,(x) converges to-
wards the target distribution [40] 4], given by the (equilibrium) Gibbs-Boltzmann expression Py (z) o exp(—SU(x)),
see Appendix |Bl We assume that U is confining enough so that exp(—8U(x)) is integrable, and for simplicity that
U(z) = U(—z). Our main interest is to find how quickly the dynamics converges towards the target density, and with
which error dP,,(z) = P,(z) — Px(z). The convergence rate can be defined from the large time limit of the deviation
from equilibrium of some observable O(x):

1
log A = sup lim —log
{O(z),Po(a)y "0 T

(4)

/ O(2)5P, (z)dx

where the maximum is taken over all possible functions O(z) and initial distributions Py(z). If A < 1 (given that
A < 1) the probability distribution P, (z) converges exponentially fast to the equilibrium distribution for large n,
i.e., |Py(x) — Py(x)| o< A™ o e™™/7 where 7 = —(log A)~! denotes the convergence time (in number of Monte-Carlo
algorithm steps unit). The convergence rate —log(A) > 0 is the figure of merit of the algorithm; the smaller the A,
the larger the rate, the smaller the convergence time and the more efficient the sampling is.

A quantity of central importance in the approach is the rejection probability R(x) (see Appendix 7 or more
precisely the fraction of rejected moves per attempted jump:

R@) = [ dyuly =) (1- OOV 00() - V@), )

where 0(2) is the Heaviside function: 8(z) =1 for z > 0 and 6(z) = 0 for z < 0. Thus, the rejection probability R(z)
from the current location x is zero if the new position y occurs downhill. In the opposite case of an uphill move, it
is 1 — (e7PAU) where the average is over all attempted jump lengths. The integral kernel of the Master equation is
then given by:

Fy(z,y) = 6(z — y)R(z) + w(z — ) [0 (U(y) = U(x)) + e 7O 9 (U (2) - U(y))]. (6)

Averaging over the position of the particle yields the mean rejection probability R, = [ R(z) P,(x)dz which is
monitored by default in all rejection-based algorithms. This is the quantity that the practitioner aims at keeping
close to 50%, following a time honored rule of thumb stating that this provides efficient sampling [I7, 32]. In the limit
n — 00, this mean rejection probability approaches the stationary value R.,. Rigorous studies, in a one-dimensional



harmonically confined setting with a Gaussian jump distribution, have found that the optimal acceptance probability
1 — Ry is close to 44%, while this quantity may decay when increasing space dimension [3I]. On intuitive grounds,
one may expect a relation between R(x) and the convergence rate of the algorithm. Indeed, starting from an arbitrary
point zg at time n = 0, the density at time n, given z(, can be written

Po(x|wo) = R(wo)"6(2 — 20) + pa(z]zo) (7)

where p,,(z|xg) is a smooth function. Thus, an observable O that would only measure the walker’s presence in the
immediate vicinity of xg, for instance O, (z¢) = lim._,o f;ﬁ“f: P, (z)dz, would decay as R(zo)™. The system as a whole
cannot relax faster, and we obtain from Eq. a lower bound for the convergence rate, corresponding to A > R(xg),

which holds for all choices of zq:

A> max R(xo). (8)

Our objective is to study A as a function of a, for a fixed choice of U(x) and f(z). We expect A to be minimum at a
well defined value a = aopt.

More precisely, for a given confining potential U(x) and type of jumps f(z), the convergence rate and the resulting
error are encoded in the spectral properties of the kernel Fg(z,y) in Eq. . We have attacked this question by
four complementary techniques: the derivation of exact results, numerical diagonalization, numerical iteration of the
Master equation, and direct Monte Carlo simulation of the random walk dynamics, with proper averaging over multiple
realizations to gather statistics, see Appendix [C} We begin with a discretized approximation to the Master equation
, for which Perron-Frobenius theorem shows that the equilibrium state, reached at large n (formally n — 00), is
unique [41]: it is given by Py (). At any time, the probability density can furthermore be decomposed as

Pu(x) = > AxPa(z) A" 9)
A

where the eigenvectors of F are denoted by Py(z), and the eigenvalues A can be proven to be real [30], see also
Appendix [B] Indeed, detailed balance [I5HI7] allows to transform the Master equation into a self-adjoint problem,
similarly to the mapping between the Fokker-Planck and Schrodinger equations [42]. The precise form of the projection
coefficients Aj is not essential. Ordering eigenvalues in decreasing order (A9 > A1 > Aa...), the eigenvalue A\g = 1 is
associated with equilibrium, with eigenvector Py (z). We also see that the asymptotic error § P,, behaves like Py, (z),
and decays to 0 like A} (also meaning that A = A). Finding the optimal a is a minmax problem, where one should
minimize A = Ay, i.e. the maximum eigenvalue, leaving aside the top (equilibrium) eigenvalue Ao = 1.

III. RELAXATION TO EQUILIBRIUM AND LOCALIZATION

While the above results hold for the discretized version of Eq. , explicit analytical calculations of the spectrum
for a number of potentials U(x) reveal that the eigenvector decomposition @[) fails in the continuum limit. In addition
to the discrete spectrum with well defined eigenfunctions, a continuum of eigenvalues appears, with singular localized
eigenfunctions which in the continuum limit collapse to a point zy where they take a finite value. The corresponding
eigenvalue is R(xo). We call this continuum of singular eigenvalues the singular spectrum, which is therefore bounded
from below and above by min, R(z) and max, R(x). Equation (J) now takes the form

Po() = Y. APa(@) N + Ln(2), (10)

Ae{o.. An}

where L, (z) stems from the singular continuum. Here, the discrete summation runs over a finite (and possibly small)
number of 1 + A terms: N > 0 since the term Ay = 1 is necessarily present in the expansion, to ensure the proper
steady state. The remaining term L, (z) localizes at large times n — oo around a finite number of points x; where
the rejection rate R(x) in is maximal: lim, oo L, (2)/Ly(x;) = 0 for any x # x;. This property of the localizing
term L, is valid only for the non-discretized master equation and is thus most directly established by analytical
means. From our analytical computations, two possible scenarios emerge: (i) N > 0 for all a and (ii)) N' = 0 for
a > a* where a* gives the position for the localization transition; a* marks the transition from a diffusion governed
evolution to a phase where relaxation is limited by rejected moves. In case (i), the eigenvalue A; lies above the
singular continuum and A = A;. The error is ruled by a “regular” eigenmode akin to what would be found in the
discretized approximation. In case (ii) on the contrary, A\; merges with the singular continuum at @ = a* and the
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FIG. 1. The top panel shows the spectrum of F for harmonic confinement U(z) = 2*/2 as a function of jump amplitude a, for
a uniform jump distribution of range (—a,a). The color code, provided on the right-hand-side, is for the Inverse Participation
Ratio of the eigenvector associated to the eigenvalue displayed (see Appendix. The upper envelope of the relaxation spectrum
defines A, see Eq. ; shown by the red line, it reaches its minimum for a = aopt =~ 3.33. This value coincides with the threshold
a” for localization. Here, A, denoting the number of discrete relaxation modes (excluding the stationary state), is 0 for large
jumps (a > a*), while N quickly grows as a diminishes. Dashed lines show the bounds for the singular continuum, that appears
in dark blue, see Eqgs. and . The bottom panel is for the IPR associated to A, as a function of a (same abscissa as
the upper panel). The localization transition is signaled by the sharp jump at a = a*. This threshold does not depend on
the number of sites Nq4, as long as Ny is large enough. Here Ny = 1000. The length unit is the thermal length, meaning the
standard deviation of Pu(z).

error is dominated by the localizing term £,,(z). Numerical simulations suggest that this localized scenario (ii) is the
generic case, see also Appendix

In Fig. [1} we illustrate the merging between regular and singular spectrum for the harmonic potential with a flat
jump distribution. To distinguish numerically the regular spectrum as in Eq. @ from the singular one, we have
discretized Fg(z,2’) into a matrix of size Ng x Ny, and computed the spectrum. Two methods have then been
employed, both relying on a large Vg analysis. For the regular part, the spacing between successive eigenvalues stay
non-zero as Ng — oo while they do vanish in the singular part. Another signature can be found with the eigenvectors
by computing the inverse participation ratio (IPR) (see Appendix [C| for the definition), usually used to quantify
localization of quantum states [43]. For a regular eigenvalue with a well defined continuum eigenvector, the IPR — 0
as 1/Ng for large Ny, while the IPR is much larger within the singular continuum as evidenced by the color code in
Fig.[Il At a = a*, this singular part crosses the regular A\; branch, leading to a gap closure. For a > a*, the singular
continuum is dominant and governs relaxation. In Fig.[I] a* is shown by an arrow. Furthermore here, the structure of
the spectrum ensures that a* = aqpt, see Fig. I} at this point, A(a) features a cusp. Quite remarkably, the acceptance
probability 1 — R, at a = a* = acpy tends at long times towards 0.455, close to the 50% rule of thumb alluded to
above.

The critical nature of the parameter a = a* can be appreciated by the behavior of the IPR of the slowest decay
mode, as displayed in Fig. [[tbottom. The large value of the IPR for a > a* indicates that 6P, ceases to be spread
over the whole system, but rather gets more and more “pinned” onto a discrete set of points; in the present case, this
set reduces to a single point, ; = 0. This results in the central dip in the error § P, (x) observed in the main graph
in Fig. [2| that becomes more narrow as time n increases (see below). Fig. [2] also reveals that a complete change of
symmetry goes with the crossing of a*. For a < a*, the longest lived perturbation in the system is antisymmetric,
see the inset of Fig. [2} given the symmetry of the confining potentials considered (U(x) = U(—=z)), such a mode
takes indeed longer to relax than symmetric ones. This can be understood from the mapping of our problem to a
Schrédinger equation, for small a, see Appendix[B3} the first excited state, meaning the A; branch, has only one zero
and is anti-symmetric. On the other hand, for a > a*, §P,, becomes symmetric after a transient (see the evolution
from an early asymmetric situation towards symmetry in Fig. [2)).

To gain more insight into the localization phenomenon and its dynamics, we studied analytically the Master equation
for confinement in a box, i.e. when U(z) = 0 for |x| < L and U(z) = oo for |z| > L. Such a case is rich enough
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FIG. 2. Scaled evolution of the error 6P, (z) = P,(z) — Pso(z) vs z for different times n (indicated by the color code on
the right), for the same system as in Fig. |1} with the same choice of length unit. Initial Po(z) = (27) "2 exp(—(z — 1)?/2).
Comparison between a = 3.6 > a* (main graph) and a = 3 < a* (inset). Although the values of a and the convergence rates
are similar in the two graphs, the asymptotic errors are significantly different.
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FIG. 3. Comparison between the exact calculation presented in Appendix [D| and the numerical data for the scaling behavior
of localization. Box potential confinement with w(n) = 3(1 + a~?n%)0(a — |n|)/(8a). Lengths are expressed in unit of the box
size L, convergence to the scaling function is shown for a = 2.1 and Py(z) = 20(1/2 — |z|). Our analytical expression for the
scaling function ¢(z) and the proof that A" = 0, for this choice of w(n), are obtained for a > 2 > a* ~ 1.79.

to display the generic phenomenology of localization, while remaining sufficiently simple to allow for the derivation
of exact results for several jump distributions w(n), see Appendix @ For cases where w(n) is minimum at n = 0,
we proved that AV = 0 for sufficiently large a as in the case of harmonic confinement. As in Fig. [2] the localization
transition then manifests as a progressive collapse of the error §P, = P,(z) — Px(x) onto the point where rejection
probability is maximal (x; = 0), with a spread which decays as 1//n. More precisely, in the vicinity of this point, we
obtained the asymptotic form

P, (z) = A"n~7 p(xy/n) (11)

where ¢(z) is a regular scaling function, and the exponent v depends on w(n) and U(x). We found that a scaling
function ansatz with A = 1 also describes the relaxation of a zero temperature Metropolis Monte-Carlo algorithms
towards a minimum [44]. In the zero temperature limit the steady state is a Dirac delta function localized at the
minimum of the potential and such a scaling form evolving into a Dirac delta function can be expected. At finite
temperature however, the steady state has a finite width which is given by the thermal length, and thus the scaling-
function ansatz does not directly follow from the ground state. The difference between the two cases can also be seen
from the vanishing integral f o(z)dr =01in while this integral is normalized to unity at zero temperature. Figure
shows that such a form is well obeyed in the simulations, and that v = 1/2 for the case displayed, in full agreement



with our exact treatment that also explicitly provides ¢(z) in Appendix |§| (Eq. ), shown by the continuous
line. Numerical evidence shows that for the harmonic potential, v = 0. Analytical studies of the box potential where
w(n) is maximum at n = 0, provide examples where we can prove that A’ = 1, in the large a limit. The localisation
transition in the error can consequently not be seen for a generic observable, but special choices of the observable or
initial conditions allow to reveal a hidden localization transition, even in this case.

IV. ANALYTICAL APPROXIMATION TO RELAXATION RATES FROM FOKKER-PLANCK
EIGENVECTORS

We already mentioned that the critical amplitude a* separates two regimes, a regime a < a* where the dynamics is
governed by the relaxation of diffusion eigenmodes and a regime a > a* where the relaxation is governed by the highest
rejection probability. Surprisingly this knowledge provides a very precise approximation scheme to find quantitatively
the full dependence of the relaxation rate A(a) on the jump length a. In the limit of small a, the master equation
reduces to a Fokker-Planck equation, and it is possible to use the lowest eigenmodes of this Fokker-Planck equation
to project the full master equation on a small finite dimensional-basis; the details of this procedure are described in
Appendix [E] and illustrated in Fig[d] We find that for a < a*, a very small number of diffusion eigenmodes provide a
very accurate estimation of A(a) or good analytical approximations when the diagonalization of the reduced matrix
is possible. On the contrary, for a > a*, the convergence of this procedure is very slow, and A(a) coincides with the
maximum rejection probability. For a flat jump distribution w(n) in a harmonic potential, for which a,,; = a*, this
procedure also provides an analytical estimate of the optimal mean acceptance probability, 1 — R, ~ 0.455, close to
values obtained by numerical diagonalization. A similar computation can be done for Gaussian jumps (see Appendix
7 for which we get analytically 1 — Ry, =~ 0.467, which improves the previously reported numerical estimate of 0.44
[31], alluded to above.
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FIG. 4. Harmonic confinement with flat jump distribution. Plot of the largest non-stationary eigenvalue as function of jump
amplitude a, obtained by 1) exact numerical diagonalization (dots) and 2) analytical approximation in the truncated Schrédinger
equation basis, with increasing N, the number of anti-symmetric diffusion modes retained (see Appendix [Ef). With N, = 2,
the analytical predictions are already very accurate for a < a*, convergence is very slow on the other side of the localization
transition a > a*

An interesting issue is to assess how robust is the localization transition found: does it survive in higher dimensions
or in the presence of interactions between particles? To investigate these, we have studied a) a non interacting model
in dimensions 2 and 3, and b), an interacting system in dimension 1 and ¢) the situation where the confining potential
features multiple local minima, see Appendix [F] In all cases, we found a localization transition, demonstrating its
wider applicability. Analyzing the fate of the present localization transition for more complex potential landscapes,
as found in disordered systems, is an interesting open problem.



V. CONCLUSIONS

To summarize, we have uncovered that a localization transition does generically take place in Monte Carlo sampling,
for a critical value a* of the amplitude of the jump distribution. A central result of this paper is to show that at a = a*,
a singular continuum takes over the regular spectrum as the leading relaxation mode. We found that below a < a*,
the relaxation rate can be determined very accurately by the projection of the full master equation on the leading
relaxation modes of the Fokker-Planck dynamics. This opens the way to analytic calculation for the relaxation rate.
For a > a*, the convergence of this expansion becomes much slower and the relaxation rate is instead given by maximal
rejection probability. This results in a dynamical collapse, evidenced by a sharp increase of the Inverse Participation
Ratio at a = a*, reminiscent of Anderson localization [45]. However the underlying physical pictures differ. In the
Anderson scenario, the localization length is given by the mean free path of a disordered potential. Here, the error
progressively shrinks to a point when increasing time n, without any corresponding limiting eigenvector v (z) with
non zero norm [ [1(x)|?dxz > 0. Thus our study shows an example of a well known Markov process whose relaxation
is not determined by the contribution of discrete eigenmodes, but by a progressive localization (collapse) on discrete
points. Furthermore, we found that a*, when it exists, coincides with the optimal jump length a,p:, although we are
not able to prove it. We may surmise that the localization phenomenon has been overlooked so far for the reason that
the upper part of the spectrum, A(a), which rules relaxation, is continuous for all ¢ including the transition point a*;
it is the derivative dA/da that is discontinuous at a*. Yet, the error incurred, due to unavoidable lack of convergence
at finite time, does change nature when crossing a*: its symmetry, amplitude, and scaling are deeply affected. The
understanding of the localization transition in Monte Carlo relaxation modes may help to avoid excess events on the
localization sites in the applications of Monte Carlo random walks.

Appendix A: Why an optimal jump amplitude?

The relaxation time of the Metropolis algorithm, for a given functional form w of the jumps (see Eq. below),
depends on the jump amplitude a. On general grounds, this time should exhibit a non-monotonous behavior with a
well-defined minimum at some specific amplitude aopy (corresponding to a minimum convergence time 7 (minimum
A, ie. a maximum rate —InA = 1/7). This is the so-called Goldilock’s principle [46]. The rationale behind this
expectation goes as follows:

e In the diffusive limit where a is small, though most of the jumps are accepted, the particle moves over a limited
region of space which results in a long time for exploring the full available space. Hence, we expect 7 to diverge,
ie. A — 1. We can be more specific, assuming a confinement potential of the form U(x) = |z|* with a > 0.
At equilibrium, the walker’s density P will be concentrated within the thermal length ¢ o< S~/ around the
origin, and equilibrium will be reached after a characteristic time 7 such that Dt = ¢2, where D is the diffusion
coefficient. For our discrete time dynamics, we have D o a?, so that we expect here 7 o« f~2/®a~2, meaning
A—1xa?

e In the opposite long jump limit with large a, most of the moves are rejected and the particle hardly moves.
As long as w(0) is non-vanishing, increasing the jump amplitude a simply reduces the displacement probability
by a factor 1/a, while leading to the same sampling of phase space on the scale of the confinement length
¢ < a. Hence we expect the system to relax very slowly, i.e., the relaxation time 7 to diverge as 7  a, so that
A —1 x 1/a. This scaling law can only be altered for w(0) = 0.

We thus expect an optimal finite jump amplitude a = aopt, for a given functional form w, where A(a) is minimal and
hence the convergence is the fastest.

Appendix B: The Master equation and its reformulations

1. The formalism

From the dynamics defined in the main text, we can write the Master equation obeyed by the walker’s density as

P,(z) = / dx’ P,_1(2") w(z—2") min (1, e P (U(z)fU(I/)))Jr {1 - / dyw(y — ) min (1, e P (U(y)U(“’)))} P,_1(x),
* * (B1)



where w(n) is the jump distribution and U(z) the confining potential. At a given time step n, the first term describes
the probability flux to x from all other positions z’. The second term is for the probability that all attempted moves
made by the particle at = (to another arbitrary position y) are rejected. It proves convenient to replace the ‘min’
function above by the identity

min (1, e (W)—U(f’))) —0(U(x) — Ux)) + e P U@-UE) g(U(2) — U(')) (B2)

where 6(z) is the Heaviside theta function. The Master equation (Bl]) can then be written as
Pa@)= [ Faloa) Paale!) o (B3)

where the temperature dependent kernel is given by

Fa(z,2') = w(z — o) [9 U() - Ulz)) + e P U@-VE) g (U(2) — U(2'))

soa=a) [1= [~ dyuty - ) o0 - U+ et OO ) - U] @

— 00

R(z")

The kernel Fg(z, ") can be interpreted as the probability of a jump from z’ to = at inverse temperature 3. The term
in square brackets on the second line of Eq. (B4) is the rejection probability, that can be recast in

oo
R@) = [ dywly— o) (1= POV o) - U)). (B)
—oo
Written as such, it directly expresses the fact that among all attempted moves from z’ to ¥, only a fraction 1 —

e~ BUW-U@E) of those leading to an energy increase (U(y) > U(x)), is effectively rejected. All others attempts are
accepted and thus do not contribute to R(x').

A first check for the validity of the Master equation is that it should conserve the total probability | fooo P, (x)dz = 1.
From , this means that kernel Fpg(z,z’) must satisfy the condition

/ Fg(z,2")dz =1 for all 2’. (B6)

— 00

Indeed, substituting Fg(x,z’) from into the integral , it is easy to check that it satisfies the probability
conservation for all z’.

Next, we verify explicitly that the Master equation , with Fg(x, ') given in , admits, as n — o0, a
stationary solution that is of the Gibbs-Boltzmann equilibrium form

1
Poo(z) = —e V@), (B7)
Z
where the partition function Z is a normalization constant. Assuming a stationary solution exists as n — oo in (B3)),
it must satisfy the integral equation

o0

Po(x) = / Fy(x,2") Pso (') da’ . (B8)
To verify this equality, we substitute Ps(z) = (1/Z) e=?U=") on the right hand side (rhs) of and use the explicit
form of Fg(z, ') from . By writing down each term on the rhs explicitly, it is straightforward to check that indeed
for arbitrary symmetric jump distributions such that w(z — 2’) = w(z’ — x), the rhs gives (after a few cancellations)
(1/Z)e=PU(®) for arbitrary confining potential U(z). This is of course expected since the Metropolis rule indeed does
satisfy detailed balance with respect to the Gibbs-Boltzmann stationary state.

2. Transformation to a self-adjoint problem

Solving the Master equation (B3] analytically for arbitrary potential is out of reach. A first difficulty one encounters
is that the kernel Fg(x, ') in (B4)) is non-symmetric under the exchange of z and z’: the integral operator Fg(x,z’)



is not self-adjoint. This problem can be circumvented by applying the following ‘symmetrizing’ trick [42]. Let us first
define a new quantity @, (z) related simply to P, (z) via the relation

P,(z) = e PU@)/2 Qn(x). (B9)

Substituting this relation in (B3], we see that Q. (x) satisfies the following integral equation
Qul) = RoQuor(@) = [ Ka(w.o') Quoala') d’ (B10)
—o0

where the action of the integral operator I?g is described by its kernel Kg(z,z’):
Kg(z,2') = w(z — 2')e PV@=-UE2 L 55 — o/ \R(x) (B11)

and the rejection probability R(z) is defined in Eq. (B5]). Thus, for symmetric jump distribution w(z —2') = w(z’—x),
Kp(z,2') is symmetric and we can consider Kz as a real self-adjoint integral operator (operating on the real line)
whose matrix element (y|Kgsl|y') = Ks(y,y') is given by Eq. 1) Besides, Eq. 1D admits a stationary solution

Qoo(z) = %efﬁ U@)/2, (B12)

The solution of the integral equation (B10|) can be written as a linear combination of the eigenmodes of the operator
Kﬁ, i.e.,

Qn(x) =Y Ay ta(z) A" (B13)
A
where ¢ () satisfies the eigenvalue equation
/ Kg(x,2")a(2") da’ = A pa(2) (B14)

and the A)’s are arbitrary at this point. Consequently, from Eq. ,

Pu(z) = > Axtha(@) e PVOLNT = N A PA(z)A" with Pa(z) = a(z) e V)2, (B15)
A A

as written in Eq. (9) in the main text.

Since the operator K 5 is real self-adjoint, both its eigenvalues and eigenvectors are real valued [36]. This property
extends to the operator defined from Fg(x, '), since

e PUV@O2 Fy(z ') = e PUVED2 Ky(z, 2. (B16)

Having a real spectrum is a non-trivial property, as the eigenvalues of Frobenius-Perron type of operators to which the
original integral equation Eq belongs are in general complex numbers inside the unit circle |A| < 1. The detailed
balance rules which are used to derive the Metropolis algorithm actually constrain the eigenvalue of the associated
integral equation to be real (at non zero temperatures) [36]. The eigenvalue Ag = 1 corresponds to the steady state
solution Qoo (z) in ; all other eigenvalues are real and strictly below 1. We have labeled the spectrum so that
1> A1 > Ao.... A particular interest goes into the eigenvalue A\; that is closest to 1 from below, since it rules the
long time dynamics.

3. The diffusive limit: Schrodinger reformulation and symmetry

The distribution w of attempted jumps is taken of the form with a representing a characteristic length. The
limit of small a is informative: the original Master equation reduces to a diffusive-like Fokker-Planck equation [42].
In line with our preceding treatment, it is more convenient to work with the self-adjoint dynamics, which is described
by an equivalent Schrédinger equation, as we proceed to show.
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For a — 0, it is possible to Taylor-expand the eigenvalue equation (B14]). Introducing the second moment of the
jump distribution

o’ = /dy y*w(y), (B17)

and making use of the identity [ dy w(z — y)(z — y) = 0 together with the symmetry relations, we get

[y wta -9 @) - vw) = [ayute -9 S s @@ - =0 @19

valid when U’(z) # 0. These cancellations stem from the symmetry w(z) = w(—z). We thereby get:

1 2
(1= Nus(e) = (= 3) + 5 U @) = U7 @)on(a)) (B19)
The relaxation rates of this equation can thus be determined from the eigenvalues €, and eigenvectors of the effective

Schrédinger equation

R 2
By = —20"(@) + L0/ @) - S0 @p(@) = i) (B20)
The connection reads
A = 102, (B21)

providing an explicit expression for the spectrum {\,}.

We stress that a truncation of the Taylor expansion behind the derivation of the Schrodinger equation is justified if
the length-scale on which the wavefunctions vary is large compared to a, the typical amplitude of the jumps generated
by w(n). Thus Eq. is not valid in the limit of the high energy modes ¢, of the Schrodinger equation. This
limitation of the Schrodinger picture can be anticipated from the fact that the eigenvalues of the original Master
equation are in the interval A € [—1,1] while the eigenvalues predicted by Eq. extend to all the range (—oo, 1].
The ground state of the Hamiltonian Eq. has a vanishing ground state eigenvalue ¢y = 0 with an eigenvector
given by 1y = e PU®)/2 This eigenvector describes the equilibrium probability distribution and is identical to the
ground state of the original Eqs. (B10IB11|), without the assumption of a small jump length.

Note that since the original confining potential is symmetric in x (even), so is the Schrodinger effective potential in
Eq. (B20), 82U’(x)?/8 — BU"(x)/4. The Schrédinger reformulation then allows to understand why the longest lived
eigenmode, for small a, is antisymmetric: it corresponds to the first excited state, with an eigenfunction featuring a
unique zero.

4. Analytical solutions in the truncated Schrédinger eigenbasis

Since Eq. is a Schrédinger equation, its (normalized) excited state eigenvectors i, (z) (n > 1) are all orthog-
onal to ¢o(z) and provide a natural basis for a variational estimation of the relaxation rate. Indeed, the definition
of A in the main text as the leading relaxation mode (upper value of the relaxation spectrum, leaving aside the top
eigenvalue A = 1 corresponding to the equilibrium state) can be recast as

A = e LW S W W) K(y, y)2(y)
@ Lo [ ®2(y) dy '

(B22)

As a consequence, by restricting to the first N excited states (which are perpendicular to the ground state 1o (z)), we
get a lower bound in the form

[dy [dy ®(y)Ks(y,y')2(y)

R B23
i Ta2(y) dy (B23)
D =191 + ... + N YN, (B24)

When the Schrédinger equation limit is valid, Eqs. (B19)-(B21]) allow to approximate the relaxation rates of the
Metropolis algorithm from the eigenvalues of the Schrodinger equation:

A = 1—0?%,. (B25)
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Upon increasing of the typical size of jump length, the operator K s will mix different Schrédinger eigenmodes and
this estimate will no longer be valid.

Solving the present optimization problem is equivalent to finding the largest eigenvalue of the reduced Ny x N
matrices K (V) with matrix elements

Khm==/lwb/dydmﬂﬂkﬁﬁhyq¢mﬁ/% (B26)

with the truncation 1 < n,m < Ny where the positive integer N gives the number of retained eigenfunctions. We
will show in section [E] that with a few modes only, very good quantitative estimates for A can be obtained by this
approach, even where Eq. is no longer valid, far from the small jump amplitude limit.

In cases where the potential U(z) is even (as assumed here), the eigenbasis 1, (z) will split into symmetric and
anti-symmetric eigenfunctions. The master equation kernel Kg inherits the symmetry properties of the potential
U(zx) and the matrix elements Eq. will be non-zero only for wavefunctions from the same parity. The truncated
matrix will thus split into a direct sum of even-even and odd-odd matrices. The mapping to the Schrédinger equation
ensures that at least in the small jump limit, A will be in the odd sector, but we will show in section [E] an example
where this is not necessarily true for large a.

Appendix C: Overview of the cases investigated and main tools of analysis
1. Potentials, sampling choice, and observables

The claims put forward in the main text rely on the study of a number of confining potentials of the form U(z) o |x|%,
with a > 0. Some emphasis has also been put in the study of confinement by hard walls, the box potential, where
U(z) =0 for z € [-L, L] and U(z) = oo for |z| > L.

In these potential landscapes, we have changed the sampling method, varying the distribution f(n) of attempted
jumps. Scaling out the jump’s typical length a, we obtain the dimensionless distribution f(z):

wn) =~ £ (1) ()

a
Different choices were made, symmetric for simplicity (f(z) = f(—2)):

e Gaussian distribution of jumps

e Exponential distribution

e Flat distribution
1
1) =0 (5-141) (1)

e Other more specific choices, as introduced to analyze the box confinement, see section

In order to study convergence to equilibrium, it is important to pay attention to the symmetry of the observables
used, for it affects relaxation rates. This can be understood from the Schrédinger reformulation, where excited states
of increasing order are alternatively even and odd in x, while their energy is directly related to the relaxation rate,
see Eq. . Therefore, we can use even observables (with even initial conditions) to suppress a slower relaxation
rate corresponding to an odd mode, allowing to estimate A\; and Ay from sampling. In particular, we measured

Oi1(z) = (x—0.5)%,  and Oy(z) = |z|. (C5)
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2. Probing localization with the Inverse Participation Ratio

Since the transition we identify amounts to a localization of the convergence error onto well defined positions, it is
essential to discriminate delocalized states, from localized ones. To this end, we discretize the integral in the Master
equation Eq. into a sum of N, terms, with a running position index to denote lattice sites 1 < i < N;. We then
introduce the inverse participation ratio for an eigenvector Wy (x) as

Ny 2
IPR(A) = I‘PA(Z')I4/ <Z I‘I/A(i)|2> : (C6)
i=1 i

This quantity can vary between two extremes. If the eigenfunction is completely delocalized over the whole system, so
that Wy (4) is a constant (normalization is irrelevant here), then IPR(A) = 1/N,, with Ny > 1. If on the other hand,
U, (7) vanishes on all sites but one, then IPR(\) = 1, irrespective of Ny. If ¥,(4), the discretization of an eigenvector
(), is well defined in the continuum limit, then IPR — 0 as N ! On the other hand, if part of the eigenfunction
localizes, a slower decay as a function of N, will be observed and the discrete eigenfunction ¥y (¢) will not converge
to a well defined continuum limit.

3. Numerical diagonalization

Numerical diagonalization of the discretized form of the Master equation Eq. allows to find the spectrum of
eigenvalues. The master equation was discretized by a uniform mesh with Ny sites. The integration was replaced by a
sum over accessible neighbors, ensuring probability conservation. For particles in a box « € [—L, L], the first and last
points of the mesh were set to —L and L respectively. For the harmonic potential, the first and last points were set
t0 X ax Where Xpax is the largest |z| allowed by the mesh. The results in Fig. 1 from the main text were obtained
for Ximax = 10 (in units of thermal length in the harmonic potential). We increased Xax up to 30 to check that the
results were independent on this choice of Xy,,«. To obtain eigenvalues and eigenvectors, we used the diagonalization
routines from the eigen++ library. To avoid the appearance of spurious complex eigenvalues due to rounding errors
in diagonalization algorithms, we took advantage of detailed balance to transform the kernel of the integral Master
equation into its symmetric form Eq. . Considering the fast increase of the numerical time required for full
diagonalization with matrix size, we used this approach for N; < 10%.

4. Numerical iteration of the Master equation

To study the relaxation of the error 6P, (x), it is also possible to follow the evolution of a fixed initial state by suc-
cessive iterations of the Master equation. This approach is computationally less demanding than full diagonalization.
With this method, we ran simulations up to Ng = 2 x 10°.

5. Monte Carlo simulations

To put our analytical calculations to the test and assess the accuracy of the predicted bounds, we have directly
simulated the dynamics defined by the Master equation. The Metropolis rule, spelled out in the main text, defines a
Markov chain which can be readily simulated by means of classical Monte Carlo. For large enough time n, equilibrium
will be reached and the walker’s position will sample the Gibbs-Boltzmann distribution . The sampling scheme
obeys detailed balance [16], which guarantees the existence of a steady state, that is furthermore unique for an ergodic
irreducible chain [I8]. We are interested in the long-time approach towards the equilibrium distribution. To gather
statistics, we perform the simulation until n = 30 typically, and repeat this for m = 10'° or 10!! independent samples.
At every time step n, we compute a number of observables, see section [C1] An observable O is then averaged over
all m samples at fixed time n, leading to O.

o) = =3 09m) ()

where the observable measured at time n in the ith sample is O@ (n).
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Our Monte Carlo estimates of the largest eigenvalue are obtained by fits to the deviation from the equilibrium
value at time n of the form [O(n) — (O) , | = a1\ + ca)\3, where (O),, is the equilibrium value, reached after long
times. We exclude the first values (typically n < 5) to minimize influence of transient behavior and ¢; and ¢y are free
constants. Technically, we use an analytical value for ((9>eq, if known, or Monte Carlo results at n = 200, where the
statistical error dominates over the systematic deviation. Performing this procedure for multiple jump distributions
parametrized by a allows us to gather measurements of relaxation rates, which we can compare to our analytical results
and the other computational approaches. For a reliable fit, it is necessary to have good estimates of the standard
errors of the measured mean values; Welford’s algorithm has been used [47, p. 232]. The acceptance probability is
computed during an independent simulation of a single particle over 1.1 - 10 Metropolis steps, where the first 10°
steps are ignored for the average.

We verify the quality of the three numerical approaches by comparing them to each other, and to the analytical
results for the case of the box potential. Figure|5|shows the estimates of A obtained from the Monte Carlo simulations
and A1 obtained from the diagonalization (the upper envelope of the spectrum).

1.0 T T T T T T T
By A (diag
% A2 (diag) —
A e 0y e
M X XK
0.8 | X » &2 ¥
+++ xx¥¥¥¥¥¥
< ++ X¥¥++
- A
&
0.6
04 1 1 1 1
0 1 2 3 5 6 7 8

FIG. 5. Convergence rate A vs. jump amplitude a for a harmonic confinement (U(x) = 2°/2) and a flat w(n) distribution
as in Eq. (cf. Fig. 1 of the main text). Comparison between the direct Monte Carlo simulations measure (MC) and the
numerical diagonalization technique. Both methods agree very well. The Monte Carlo approach needs to look at symmetric
and asymmetric observables to measure the different branches of the spectrum. The observables used are provided in Eq. ,
For a < a* ~ 3.33, using the asymmetric observable O; provides a very good estimate of the largest eigenvalue A\ = A. For
a < a”, using the even observable O yields the second largest eigenvalue A2. For a > a”, the largest of both (A from O2) gives
a very good estimation of A. The singular continuum is shown by the grey region. As in the main text, a is given in units of
the thermal length at equilibrium.

Figure |§| shows the shape of the deviation §P,(z) from the equilibrium distribution at a finite time, for uniform
jumps in the harmonic potential. The direct Monte Carlo results and the results from the iteration of the Master
equation are compatible within statistical fluctuations. This lends a high confidence in the results of the iteration for
longer times, which are shown in the main manuscript.

Appendix D: The box potential

Obtaining exact analytical results in the general case of a potential U(z) in |z|* seems out of reach. Yet, the box
potential, where the random walker moves freely between hard walls at =L, is a useful model system that presents
the whole range of phenomena observed generically. A key aspect lies in the choice of the jump distribution scaling
function f(z), that can lead to any of the two scenarios mentioned in the main text: (& a gapped spectrum for which
the discrete branch A; is above the singular continuum, for all jump amplitudes a (regular case, where the singular
continuum, although present, does not play a role in the long time error, and there is no localization); (b) a gapless
spectrum where the singular continuum becomes the dominant relaxation mode for a > a*. This situation (b) where
localization appears is the generic case. This is why we focused on case (b) in the main text.

It is useful here to introduce the late-time rejection probabilities R, (0) at = 0, and R,(edge) at the system’s edge,
meaning = £L in the box case. Both depend on a. For a — 0, we have R,(0) < R,(edge): all moves from = =0
are accepted (vanishing rejection probability), while only half of them are, starting from the edge (both in the box
case, and when exponent « > 1, leading to a convex-up confining potential). A careful inspection of all the numerical
data we gathered shows that case (@) corresponds to R,(0) < R,(edge) for all a; (b) is for the situation where R,(0)
and R,(edge) do cross for a = a*, so that R,(0) > Ry(edge) for a > a*. It is then straightforward to realize that
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FIG. 6. Shape of the rescaled deviation §P,(x) vs = from the equilibrium distribution at finite times (here n = 15). The
symbols show results of direct Monte Carlo and the lines show the results of the iteration of the Master equation; both methods
are in good agreement. Same confinement and jump distribution as in Fig.

the behavior of w(n) at small n discriminates the two regimes: if w(n) decreases when increasing |7|, we have case
(@); if w(n) increases when increasing |7, we have case (b). We considered the family of polynomial w-functions, for
instance piecewise linear or quadratic such as

_ 1 a—|n|
w®(n) = a2+ o) <b+ Ca> 0(a — In|) (D1)
a2 — 2
W) = oy (04 e ) la I (D2)

parameterized by the constants b and ¢, in addition to the jump size a: positive values of ¢ define convex-down
functions, pictorially written w™(n) and associated to case @); ¢ < 0 defines convex-up functions, denoted w"(n),
associated to case (b). We take hereafter L = 1, without loss of generality.

1. Numerical results

We show in Fig. m the spectrum of Fg(z,2’) obtained by numerical diagonalization with the parabolic jump dis-
tribution w(?)(n), either of the type w” or w". The distinction between the gapped (@), with w") and gapless ((B),
with w") cases appears. At variance with case (@), (b) shows a regime for a > a* ~ 1.79 where the singular continuum
defines the dominant relaxation mode, so that localization ensues. The crossing of the curves R,(0) and R,(edge)
for a slightly below a* is also visible. For the present box potential, U(x) either vanishes inside the box, or diverges
outside. Hence, the value of inverse temperature is irrelevant. We have checked that the qualitative results remain
unchanged for all monotonous (for n > 0) jump distributions w(n) even in 7, in particular using the piecewise linear
distribution w(®(n). Thus for the box potential U(x) = 0 (z € [~1,1]) the presence or absence of localization is
determined by whether w(n) is either minimum or maximum at 7 = 0.

2. Exact results on eigenvalues of the Monte-Carlo Master equation for a box potential

We have seen above that the box potential subsumes the gapless/gapped spectra dichotomy, corresponding to the ()
absence/(b) presence of localization. Besides, the shape of the gapless spectrum shown in Fig. m is closely reminiscent
of its counterpart presented in the main text. We thus take advantage of the fact that exact results can be obtained
with the box confinement, to shed new light on the localization phenomenon and its scaling properties.

For a box potential U(zx) = 0 (z € [—1,1]) the eigenvalue problem of the Monte-Carlo Master equation simplifies
into:

A = [ 11 () wlz —y) dy + [1 -/ Cwly—o) dy} Uy(2) (D3)

-1
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FIG. 7. Spectrum of the kernel Fj(x, ') for the box potential, with either @ w® (n) = w"(n), left column (b = 0,¢ = 1), or
® w® (n) = w"(n), right column (b= 2,¢ = —1). In both cases, the singular continuum appears in dark blue. In the gapped
case (a) where there is no transition, it remains below the discrete A1 branch; the optimal jump can be found by minimizing
A1 in Eq. which gives aopt = v/c(1+ 3k@)(b+ ¢)~1 ~ 2.251. In the gapless case (B) on the right, the singular continuum
becomes the dominant relaxation mode for a > a*. Localization ensues, for a > a* = aopt =~ 1.79. Lengths are in units of the
box size (L = 1).

where ) is the eigenvalue and W) () is the eigenvector. For a > 2 and the two choices w®) (1) (p = 1,2) from Eq. (D2)),
this equation reduces to a second order differential equation which can be solved to yield a single eigenvalue A < 1.
This eigenvalue can be written in the form:

)\gp) = R®(1) + (@ — 1)[R® (1) — R (0)]. (D4)

Here, the rejection probability R®)(x), with index p = 1 and p = 2 is given by

RP(z)=1-— /1 wP) (z — y)dy. (D5)

-1

The constants k®) read k() ~ 1.439 and k() ~ 1.356; they are the solutions of

1 3
Npo) arccothV k(M) =1, vk arccothv k() = 3 (D6)

In both cases, k&) > 1, which implies that if R®) (1) > R®)(0), the eigenvalue )\gp) > R®)(1) = max, R®) (z) (case
®). On the contrary, if R?®)(1) < R®)(0), )\gp) < RP)(1) = min, R® (x). Thus, it is indeed the comparison between
R®) (1) and R® (0) which determines if Aﬁp ) is above or below the singular continuum, thereby discriminating between

(@ and (®).

Evaluating the integrals in Eq. (D5]) we find the explicit expressions (we remind that they are valid for a > 2):

—2ab + 2a%b + ¢ — 2ac + a*c + kWe
a?(2b+ c)
—3a?b + 3a%b + ¢ — 3a%c + 2a%c + 3kP ¢
a3(3b + 2c) '

1
A =

2
AP =
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To summarize at this point, for both parametrizations of the jump distribution function and for a > 2, there
is a single eigenvalue A < 1 (besides the singular continuum). This eigenvalue lies above max, R(x) or below
min, R(z) depending on whether w(n) is (@ maximum or (b) minimum at n = 0. Considering that the interval
(min, R(x), max, R(z)) is actually filled with singular eigenvalues A = R(x), we describe this situation as A; lying
above or below the singular continuum.

3. Exact results on the localization of the error 6P, ()

We wish to describe analytically the relaxation of the error dP,(x) when A; lies below max, R(x). We remind
that for the two parametrizations of w(n) from the previous section, a stronger result holds and that in this case,
A1 < min, R(x). The Master equation for the error §P,, = P,, — Po, reads:

Py (x) = /_ SPuu)u(e —y)dy+ R@6P(a)  with  R()=1- / w(z — y)dy. (DY)

-1

Normalization implies [ 6Py(z)dz = [ 6P, (x)dz = 0.
For a > 2 and focusing on the case of a parabolic jump distribution in Eq. (D2]), it is possible to simplify notations:

2
w(2)(7]) = wo + wo 772’ R(SL') =19 — 1o x27 ro = 1— 2’(1)() — % , ro = 2’[1)2, with Wo > 0. (DlO)
We then look at symmetric initial conditions § Py(x) = 6 Py(—z):
1
0P, i1(x) = wy / 5Pu(y)y?dy + R(x) 5P, (x). (D11)
~1
We introduce the generating function:
o) 1
G(z,z) = ZéPn(x)z" = 0Py (x) +w2z/ Gy, 2)y*dy + 2R (x)G(x, 2) (D12)
n=0 -1
from which we get
Gla,2) = —— (6Py(a) +w z/l Gly, 2)y’d (D13)
) ST 2R 0 2 » Yy, 2)y-ay | -

1
We then solve for Ga(z) = / G(z, z)z*dx. Integrating the Master equation we find:
—1

1 2
Gol2) = oz i / 0Py (x)x di. (D14)
V1 —=7rgzarctan \/\1/;20;; 1 1—2zR(x)

To make further progress, we choose as an initial condition
6Py(z) = r10(r — |z|) — 1, (D15)

which allows to compute the integral in Eq. (D14) explicitly:

1
2 1 arctanrZ Toz
2 . 2
= de = — (1—-—-——— th 2= : D1
629) = [ Gloetts = 2 (12 1HEMITY . (D16)
We note that Ga(z) is the generating function for the series
1
Sn = / 6P, (z)x?dx (D17)
—1

which can be viewed as the error in the variance x2 at step n. The general method of singularity analysis [48] allows to
find the asymptotic behavior of a series from the analysis of the singularities of its generating function in the complex
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FIG. 8. Comparison of the numerical results for S, = f_ll §P,(z)x?dr and Q,(z) = R(x) "6P,(z) with the asymptotic

estimates in Eqs. (D18D25)). We chose w® (1) = 3(1 + n*/a?)/(8a) and a = 2.1; the number of sites for the discretization of
the Master equation was Ny = 2 x 10°. The initial conditions were § Py(z) = 20(1/2 — |z|) — 1 (r = 1/2). We note that even if
simulations with a finite N4 cannot reproduce the asymptotic power in the n — oo behavior (because of the discrete spectrum),
the agreement at finite but large n is nevertheless very good.

plane which are nearest to the origin z = 0. For G2(2) the singularity closest to the origin is z = 7 ! The asymptotic
expansion of the generating function near this singularity allows us to find:

2(1—r) rg/z ry (1-— r)rg/2[748r2r0 +4n2(1+ 7 +12)rg — 15m2r2r,y)] Ty

S, ~ — — . (D18)
2 3/2 1,3/2 5/2 5/2
r (mr2)3/2 3/ 47r7/27'4r2/ nd/
We then introduce the functions @, (z) as
6P, (z) = R(x)"Qn(2), (D19)
and the recurrence equation Eq. (D11]) becomes:
w
Qi1 (a) = = / 5P ( “yPdy 4 Qn(x) (D20)

Z / “MyPdy + Qo). (D21)
Taking the limit n — oo and under the proviso that the series converges, we find

Qoo (z) =

w2

mGQ(R(:z:)*l) + 0Py (x) (D22)

where G(z) is defined in Eq. (D14). The problem with this expression is that R(x)~" > 75! lies outside the radius
of convergence |z| < 7o of G2(z), so this formula is valid only at © = 0 when R(0) = ro. Using the obtained value of
Go(rgt), we find

Qo (0) = 0. (D23)

We can then obtain an asymptotic estimate for @, (0) :

Qn(0)=Q 2ro Z / 8P (y)rg "yPdy (D24)

1/2
"o

1= in+1  (1- r)ré/Q[—48r2r0 +4m2(1 47+ 1r¥)rg — 15m3r2r] 1l

r2 7T3/2r:2l/2 In3/2 12%7/%4743/2 n3/2" (D25)
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From Eq. (D19), it follows that 6P, (0) = r{Q,(0) where we used R(0) = rg. Equation (D25]) indicates that @, (0)

decays as a power law n~1/2 for large n:
20—r) [ro ¥
P, (0) ~ 3753 /Enl/Q' (D26)

Comparison of Eqs. with numerical simulations of discretized approximation of the Master equation are
shown in Fig.

For 2 # 0 the series becomes diverging and Q. (x) does not exist. The leading asymptotic behavior can be extracted
from the singular behavior of Q(z, z) near z = 7“51:

1—r /[ 7 8/2 Ty
0P, (x) ~ (D27)

r2z2 \ 7o n3/2’

Interestingly, we find that the ratio 0P, (x)/dP,(0) (for  # 0) does not decay exponentially but as a power law
n~t. Comparing Egs. (D26]) and (D27)), we thus proved the main property of the localizing contribution to the error
dP,(x):

lim 6P, (z)/0P,(0) =0 whenever =z # 0. (D28)

n—0o0
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Master eqhation
Asymptotic form ——

8P.(x) n"? R(0)"

FIG. 9. Relaxation of 6Py(z) = 20(1/2 — |z|) — 1 (i.e. 7 = 1/2) for w® () = 3(1 +n*/a*)/(8a) and a = 2.1; same parameters
as Fig.[8] This figure compares the rescaled P, (z) as obtained by direct iteration of the Master equation at step n = 700, with
the scaling prediction of Egs. and . The right panel shows convergence for n < 100; the moving discontinuity is a
trace of the initial distribution Py(z), that is discontinuous at x = £1/2. Hence, as time proceeds, the central peak extends
further, and ultimately reaches the scaling form shown on the left plot. We also illustrated the convergence to the scaling
function Eq. on Fig. 3 from the main text using the same dataset.

To find a uniform approximation to d P, (x), we assume the following scaling form

A povi. (D29)

0P, (z) =
Using Eq. (D18)), we can approximate

—n rorg ™ [ 1—r r3
1" (Pasa () - RE)IP () = 22 | Py =~ (D30)

On the other hand using Eq. (D29)), we find:

5" (0Pos1(x) — R(2)0P(z) = ———p(a/n+ €) — (ro — raa)p(v/n) (D31)

~ Spe(avin) - o e(avn) + Sl ay/m), (D32)

2n3 2n
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where we introduced a formal small expansion parameter ¢ = 1 and expanded to first order in €. Introducing T = z+/n
and combining Egs. (D30ID32)), we find a first order differential equation on the scaling function ¢(%):

roT 0 1—r 3

20 @) + 1B 0l®) — Di(@) = -

. D33
r2 37y ( )

Equation (D33]) admits a single symmetric solution which can be expressed in a compact form introducing the Dawson
function:

Di(z)=e¢" / eV dy. (D34)
0
We get
~ 21—=7r) [ro _ [ro _ [r

=—2 /—|1-22,/=D =1. D35
#(@) w3202\ ry [ * To + (x ro)] ( )

From the results

1

D4 (0)=0 and Dy (x) ~ for x — oo, (D36)

% a8

we recover Egs. (D26]) and (D27). Hence, the scaling assumption (D29 appears fully consistent. The comparison
between d P, (x) obtained by iteration of the Master equation and the prediction of the scaling form is shown in Fig. @

Appendix E: Analytical calculation of the MC relaxation rate for an Harmonic potential

In this section, we show two examples of analytic calculations in the truncated Schrodinger eigenbasis, as introduced

in sub-sections [B3|[B4]

For a harmonic potential U(z) = 2%/2, the (dimensionless) Schrédinger equation reduces to the celebrated eigenvalue
equation of a quantum harmonic oscillator:

2

x
The corresponding eigenfunctions can be expressed through Hermite polynomials H,,:
1 2
¢n(gj) = Niefm /4Hn(271/2x) (EQ)
N, = /dan(Qfl/Qm)%*”ﬁ/?dm (E3)

where N, is the normalization. To obtain an approximation (and lower bound) for A, we calculate the matrix elements.

Km=/@/wwwmﬂmw%w> (E4)

where the integral kernel is given by Eq. (B11)). Here, as in the main text, we have expressed positions in units of
thermal length which amounts to setting § = 1. This gives the following expression for K,

K = /OO dy w(y) /00 dx Y (z — y/2) Yn(x +y/2)eflmy‘/2 + /00 dx Yy (), (x)R(x) (E5)

— 00 — 00 — 00

where R(x) is the rejection probability. For sufficiently simple expressions of w(n) and low values of indices n and m,
the integrals can be evaluated analytically.

For a symmetric potential U(x), the truncated matrix splits into a direct sum of odd-even subspaces, as discussed in
The sequence of Ng x N, truncated matrices built from odd eigenfunctions will be noted K((,NS). For example, the

matrix Kél) reduces to a single scalar K71 while K 52) is the 2 x 2 symmetric matrix with matrix elements corresponding
to Ky for n,m € {1,3}; higher order approximations are obtained similarly. Likewise with the even sector: the
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sequence of Ny x N, matrices Ké ) is constructed from even wavefunctions. Since wo(m) is an exact eigenvector for

any value of the jump amplitude a, the lowest order Kél) is given by the scalar Kss; the next order KéQ) is given by

Ky for nym € {2,4} and so forth with increasing order N,. The relaxation rate is then approximated by

AN = max eigenvalues(KV)) | ANe) = max eigenvalues(K (V<)) (E6)
AWNS) = max {AgNS),AéNS)}. (E7)

Below, we considered the case of an harmonic potential U(x) for several possible shapes of w(n). In all cases, we
found that the following approximation is very accurate:

A ~ max {A(NS), max R(:z:)} (E8)

where R(x) is the rejection probability. This expression is operational even for small values Ny = 2, and indistin-
guishable from numerical diagonalization at Ngy = 6.

1. Harmonic potential with a flat jump distribution w(n)

A (odd) -
As (0dd)
Ao (eveng

)

0.9 ) . A4 (even

R(0) = max R(x

0.8 fire N

0.7 f

0.6 |

0.5 &
05 1 15 2 25 3 35 4

FIG. 10. Comparison between numerical eigenvalues and the analytical approximation for U(z) = z2 /2 with flat jump dis-
tribution w(n) = O(a — |n|)/(2a). The symbols show numerical eigenvalues of the discretized master equation (Ng = 2000,
Xmaz = 10) while the continuous curves display the analytical results for the four slowest relaxation eigenmodes: A1, A2, A3 and
A4. The analytical approximation is obtained from the two highest eigenvalues of K (vielding A1 and As) and K© (yvielding
A2 and A4). The analytical top eigenvalue A is thus here A, We see that below A, the other eigenvalues are also indistin-
guishable from the numerical eigenvalues, until the crossing with the singular continuum, bounded by R(0) = max, R(z). This
shows that lower eigenvalues are also very accurately reproduced in this approximation, for values of a below the localisation
transition of the corresponding mode. The maximum rejection probability is given by Eq. (E13).

We report explicit results for the lowest order terms for w(n) = 6(a — |n|)/(2a), indicating that the scaling function
f reads f(z) =0(1 — |z|)/2. We find:

) " a2
aerfc (Tﬁ) — 2\/2 (a? +8)e % + 16\/%
6a

Ki(a) =1- (E9)
—V2raPerfe (ﬁ) +4 (a* +a® +8) % —32
K13(a) B 20V 3ma (ElO)
a? 2
1 a (20a® + 207at + 37242 4 2976) e~ % 1244/ %
K =1— — (5a* + 63a% + 210 2efc< ) — Ell
) 420 (b ¢ Jaer 2V2 420v/27a 35a (E11)
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The steady state rejection probability R, is given by:

Ro=2/2 <e*§ -1) +erf<2?/§> : (E12)

and the maximum rejection probability reads:

/2 a
R(0) =maxR(z)=1— erf [ — ] . E13
(0) = max R(a) ot () (E13)
This gives explicit expressions for the first two orders:
AL = Agl) = Ky1(a) (E14)
2
A® — g — Kl + Knla) | \/ Kaafay + (000 Kl (E15)

We do not report explicit expressions for higher K,,, matrix elements, as expressions become more cumbersome.
From Fig. 4 (in the main text), we see that this approximation quickly converges for a < a* and that A® ig already
very close to the value of A obtained by numerical diagonalization. For a > a*, the convergence of this expansion is
much slower and A is instead given by the maximum rejection probability, as explained in the main text.

The rapid convergence of the approximation Eq. with increasing Ng was already illustrated on Fig. 4 from the
main text for the slowest relaxation mode A. Here we show that this approximation allows also to obtain accurate
expressions for other sub-leading relaxation modes (see Fig. .

2. Harmonic potential with a Gaussian jump distribution w(n)

1 ‘ —
A R(0)
0.95 | AD A ]
°@ NG
L A, ]
091 NG NG
085} ° ¢ :
< o8| <
0.75 |
0.7 |
0.65 |
0.6
0 05 1 15 2 25 3 35 4 45 5
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FIG. 11. The left panel shows analytic approximations for A for U(z) = x?/2 with a Gaussian jump distribution f(z) =
(vV2m)texp (—z2/2). In this case, the matrices KN provide a good approximation for A for a < aop: >~ 2.21845. At a = aopt,
the symmetry of the leading relaxation mode changes from odd to even and for a > aept, A is instead well approximated by
A£N5>, becoming increasingly close to the maximum of the rejection probability as a increases further. We note, however,
that there does not seem to be a localization transition in this model: the IPR of the eigenvector for A follows a Nd_1 scaling
suggesting that for this case N/ = 1. The right panel is similar to Fig. , confirming that K and K provide very
good approximations for the leading eigenvalues up to the crossing with the maximum of the rejection probability, given by
Eq. . Using this method, we find position of the localization transition for slowest antisymmetric relaxation mode A2 at
a =~ 2.55657.

For a Gaussian jump distribution

win) = — exp(—;;) o f<z>=1exp(—f), (E16)
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we find the matrix elements for the odd subspace of the Schrédinger eigenbasis:

2 2 2 3
a a (a a (El?)

Kn@=1-2 +% aret 7) -
11(a) 5+ —arctan ( 3 +W(a2+4)

™
\/§a4 oy (120" + 8002 = 37 (a2 +4) a4 96 )
Kis(a) = /5% arctan () E18
13(a) 5 arctan { 5 + 2/or (a2 1 4)° (E18)

5a* + 9a% + 6) a® 2 15a® + 187a® + 834a* + 1560a? + 1152) a®
K33(a>:1_(a+a—|—)a arctan()—l—( o ¥ ST a—|—3 “ )a (E19)
27 37 (a2 +4)
For the Gaussian jumps, A also depends on the matrix elements in the even subspace:
2 (3a® + ) — a? (3a® + 4) arctan (2
K22 (a) — ( ) (2 ) (a) (E20)
™
a? 2
Kay(a) = —=————{30a* + 128a® — 3 (a® + 4) (5a° + 8) a arctan () - 64} E21
24(0) 4y/37 (a? + 4) ( ) ( ) a (E21)
35a8 4+ 80a* + 724> + 32) a® arctan (2 105a® + 940a8 + 2712a* + 307242 + 1920) o®
Ky(a)=1- ( ) (a) + ( 5 ) (E22)
8m 127 (a2 + 4)
We also get:
R(0) Rlz)=1— — (F23)
=maxR(z) =1—- ——
T V1 — (12
2 2
Ro =1— —arctan — (E24)
T a

Figure compares the result of the Schrodinger eigenbasis approximation for a Gaussian w(n) to numerical
eigenvalues for the discretized master equation. We do not find evidence of a localization transition for A, but instead
a change of parity at a = aopr =~ 2.21845. As for the case of a flat jump distribution shown on Fig. the Schrodinger
eigenbasis approximation works very accurately for all the slowest relaxation modes until they cross the singular
continuum. It seems that even if N' = 1 for this case, the maximum rejection probability max, R(z) is still a very
good approximation for A at large a (a > 4).

a

FIG. 12. Results for U(z) = 2?/2 with a jump distribution w(n) = |n|6(a — |n|)/a*. The continuous curves show the results of

the analytical calculation K, ((,6) and K, 56); they provide a very good approximation for the leading eigenvalues up to the crossing
with the maximum of the rejection probability.
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3. Harmonic potential with jump distribution w(n) = a™2|n|0(a — |n|)

Again for a harmonic potential, analytical results for this shape of w(n) can be obtained in the same way as above.
We do not report them here, and only provide a comparison between numerical and analytical calculations on Fig.

4. Comparing the different jump distributions

w(n) Gopt a* A(dopt) |1 — Roo(opt)
(2a)0(a — |n|) 3.32878|a* = aopy| 0.62382 0.45543
(av2m) ' exp(—1?/(242))|2.21845| none 0.64638 0.467
a”2|n|6(a — |n|) 2.17613|a" = aopt| 0.61723 0.48193

TABLE I. Summary of the results on the optimal jump length a for several shapes of the jump distribution w(n) in a harmonic
potential. These three cases correspond to Figures [I0] [[T] 2]

Among the three jump distributions worked out above, the last one provides the value A(aop;) = 0.61723, which is
the lowest among the studied examples. In this respect, this jump distribution, at the optimal jump amplitude aqpt,
yields the fastest method for sampling the equilibrium distribution. Results are summarized in Table[]]

f(z) = 6(|z]-1)/2 ——
095 1 tz) = @2n) " exp(-z%/ 2) ——
0.9 f(z) = |2|6(|z|-1) T

0.85

0.75
0.7
0.65

FIG. 13. Comparing different jump distributions. Plots of the leading relaxation eigenvalue A as a function of the acceptance
probability, for the three cases summarized in Table[l] corresponding to Figures [I0} [T}

Figure (13| compares the spectral results for the three jump distributions. We note that they correspond to a w(n)
that is either increasing, flat, or decreasing with |7|. In spite of these differences, the leading relaxation eigenvalue A
displays the same behaviour as a function of the acceptance probability 1 — R. In particular, the three cases feature
optimality (smallest A, fastest convergence) for an acceptance probability close to 50%.

Appendix F: Generalization: beyond one dimension and inclusion of interactions

While the results presented so far focused on one-dimensional dynamics, we here put to the test the generality of
the localization transition by considering more generic models, beyond 1D or with interacting degrees of freedom.
The analysis is here mostly numerical.
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1. Beyond 1D

Simulations in higher dimensions rapidly become demanding in terms of numerical resources. In two dimensions,
it is still possible to use direct diagonalization to obtain the full eigenspectrum of the master equation and the IPR
of the eigenvectors. An example of such a simulation is shown on Fig. [[4 the results are very similar to the one
dimensional simulation in Fig. 1 (main text) except that a* ~ 2.6 instead of a* ~ 3.3 due to the two dimensional
nature of attempted jumps.

FIG. 14. Spectrum of the Monte-Carlo master equation kernel for a two dimensional particle confined to the cell (—5,5) x (=5, 5)
(discretized to 100? boxes) and in the potential U(z,y) = (2% 4+ y*?)/2 (8 = 1). The attempted jumps are two dimensional
changing both  and y in an interval (—a, a) centered around their initial values. Color shows IPR/2, where the square root
is used to enhance contrast (the lower contrast in IPR values is related to the high symmetry of the potential U(z,y), see for
example the higher contrast in Fig. where all symmetries are broken).

Simulations in 3D are numerically more accessible if jumps are attempted in only one of the directions z,y, z at
a time. This makes the matrix representing the Master equation kernel sparse, allowing to find the time evolution
of the error distribution 0P, = P, — P»,. We show in Fig. the evolution of the IPR of 6P, with the number of
algorithm steps (time). A sharp transition from decreasing to increasing IPR as a function of time is seen around
a = 3.3. Since the attempted jumps are 1D, the localization transition takes place at the same value as for the 1D
harmonic potential.

&1t
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10-5 . . . .
0 200 400 600 800 1000

t (number of steps)

FIG. 15. A 3D example with the potential U(z, vy, z) = (2 +y* + 2%)/2 and a confinement volume (-5, 5)% discretized in 1003
boxes. The initial distribution Py(z,y, ) is an off-centred Gaussian.
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2. Interactions

We provide a numerical example illustrating the localization transition in the Monte Carlo relaxation of interacting
particles. We consider a case which is numerically tractable by full diagonalization, in analogy with Fig. 1 from
the main text and with Fig. [l We consider two particles at positions z1 and z in a one dimensional box, with
21,9 € [—5,5]. The energy of a configuration (x1,z2) is given by the potential:

3 + a3 2 taz
2 01+ oy —aof

Ui(xl,xg) = — X2 (Fl)

where, depending on the plus or minus signs, the interaction between x; and x5 is repulsive (Uy) or attractive
(U-). We simulate the steady state of this system using a Monte-Carlo algorithm, with jumps where we attempt to
simultaneously change x1 and x5 in an interval (—a, a) around their initial position. The spectrum of the corresponding
master equation is shown in Fig. indicating that a localization transition occurs in this case even when interactions
are present. Switching from repulsive to attractive interaction changes the value of the optimal jump length a*, and
the spread of the eigenspectrum. In both cases however, the IPR drastically increases for ¢ > a*, indicating a
localization transition.

Repulsive Uy Attractive U_

IPR(A)

FIG. 16. Spectrum of the Monte-Carlo master equation kernel for two interacting particles, with interaction potential given
by Eq. (F1). Two situations were investigated, with a repulsive (left panel) or an attractive potential (right panel). The
configuration space, restricted to the interval (—5,5), was discretized in 100 x 100 cells.

3. Relaxation in presence of multiple local minima

Finally, we illustrate numerically the relaxation spectrum for a Monte Carlo simulation in a 1D potential with many
local minima. We take the potential:

U(x) = 2%/2+ 3 sin 9z (F2)

inside a box & € (—5,5). This potential has many local minima as illustrated in the left panel of Fig. The
eigenspectrum (see Fig. [17] right panel) features a localization transition at a* ~ 2.1 as in the prototype cases with
only a single minium. At variance with the spectrum for U(x) = x2/2 (see Fig. 1 from the main text), many quasi-
degenerate eigenvalues are present near A = 1, for low values of the jump amplitude a. In this regime indeed, hopping
over the barrier is thermally activated and the mimima become metastable.
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FIG. 17. (left panel) Example of a potential with many local minima given by Eq. (F2). (right panel) Monte Carlo relaxation
eigenspectrum for this potential with a flat jump distribution as in Fig. 1 from the main text. The box (—5,5) was discretized
in 10 sites.
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